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UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS
MIDLAND-ODESSA DIVISION

NEURAL Al, LLC

Plaintiff,

V. Civil Action No. 7:24-cv-00221

NVIDIA CORPORATION
JURY TRIAL DEMANDED

Defendant.

N N N N N N N N N N N

COMPLAINT FOR PATENT INFRINGEMENT

Neural Al, LLC (“Neural Al” or “Plaintiff”) alleges against Defendant Nvidia Corporation
(“Nvidia” or “Defendant™) the following:

1. This case involves patented technologies that revolutionized, and have become
widely adopted in, the field of graphical processor unit (“GPU”)-accelerated computing for
artificial intelligence, machine learning, and complex numerical simulations. GPU-accelerated
computing powers many of the most advanced and powerful forms of artificial intelligence that
have exploded over the past decade.

2. Highly complex numerical simulations, such as the prediction of protein chains,
genetic sequences and cryptographic sequences, and advanced machine learning techniques such
as deep learning neural networks, require hardware capable of a high degree of parallel processing
for efficient computation. GPUs, which generally have hundreds to thousands more computational
processors or “cores” than central processing units (“CPUs”), are the preferred hardware for
executing such simulations and machine learning techniques. Indeed, the parallel operation of

thousands of high-performance GPUs have become a basic necessity for the execution and training
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of complex natural language and image-generation models, such as ChatGPT’s GPT-4 and
Sora.Al. (See https://www.fierceelectronics.com/sensors/chatgpt-runs-10k-nvidia-training-gpus-
potential-thousands-more.)

3. Before Plaintiff’s innovations, the conventional wisdom in the field of GPU-
accelerated computing was that the exchange of intermediate outputs between a GPU and a CPU
was too computationally expensive. This was so because the GPU, adapted for highly parallel
processing tasks (e.g., graphically modeling a physics engine or rendering complex moving
images), was ill-suited for handling operations better left to the CPU, like interacting with a user’s
mouse and keyboard or sending and receiving simple datasets. Plaintiff’s foundational technology
changed this by inventing techniques that leveraged the unique advantages of both the CPU and
the GPU to enable their efficient interplay in hardware-accelerated computing.

4. Plaintiff’s patented technologies are enshrined in U.S. Patent Nos. 8,648,867 (“the
’867 Patent”), RE49,461 (“the *461 Patent”), and RE48,438 (“the *438 Patent”) (collectively, “the
Asserted Patents” or “The GPU-Based Acceleration Patents™).

NATURE OF THE CASE

5. Plaintiff brings claims under the patent laws of the United States, 35 U.S.C. 8 1, et
seq., for infringement of the Asserted Patents. Defendant has infringed and continues to infringe
each of the Asserted Patents under at least 35 U.S.C. 88271(a), 271(b) and 271(c).

THE PARTIES

6. Plaintiff Neural Al, LLC, is the owner by assignment of each of the Asserted
Patents.
7. The technology of the Asserted Patents underpins multiple artificial intelligence

and accelerated computing products that incorporate the patented technology, such as Neurala,
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Inc.’s Vision Inspection Automation (VIA), Vision Al software, and Brain Builder platform.

8. Neural Al is a Texas limited liability company and is a registered business in Texas.
Neural Al maintains its principal office in this District, at 510 Austin Avenue, Suite 2554, Waco,
TX 76701.

9. Defendant Nvidia Corporation is a Delaware corporation with its headquarters and
principal place of business in Santa Clara, California. (See https://investor.nvidia.com/financial-
info/sec-filings/sec-filings-details/default.aspx?Filingld=17293267, U.S. Securities and Exchange
Commission  Form  10-K  for  Fiscal Year Ended January 28, 2024;
https://nvidianews.nvidia.com/multimedia/santa-clara-headquarters.) Defendant Nvidia
Corporation is registered with the Secretary of State to conduct business in Texas. Nvidia has an
office in this District located in Austin, Texas. (See https://www.nvidia.com/en-us/contac.)

JURISDICTION & VENUE

10.  This action arises under the Patent Laws of the United States, 35 U.S.C. § 1, et seq.
The Court has subject matter jurisdiction pursuant to 28 U.S.C. §8 1331 and 1338(a).

11.  This Court has personal jurisdiction over Defendant because it regularly conducts
business in the State of Texas and in this District. This business includes operating systems, using
and/or providing computer hardware, software, firmware, and platforms, and/or providing services
and/or engaging in activities in Texas and in this District that infringe one or more claims of the
Asserted Patents, as well as inducing and contributing to the direct infringement of others through
acts in this District.

12. Nvidia has also, directly and through its extensive network of partnerships,
including with local IT service providers, purposefully and voluntarily placed products and/or

provided services that practice and/or implement the methods, systems, and apparatuses claimed
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in the Asserted Patents into the stream of commerce with the intention and expectation that they
will be purchased and used by customers in this District, as detailed below. (See
https://www.nvidia.com/en-us/about-nvidia/partners/.)

13. Defendant has also acknowledged that this Court has personal jurisdiction over it
in cases filed against it in this District. (See, e.g., Vantage Micro LLC v. NVIDIA Corporation,
Case No. 6:19-cv-00582-RP, ECF 22 (W.D. Tex., Jan. 4, 2020) (admitting to personal
jurisdiction); Ocean Semiconductor LLC v. NVIDIA Corporation, Case No. 6:20-cv-01211-ADA,
ECF 14 (W.D. Tex., Mar. 12, 2021) (same).) Defendant has admitted “it is subject to this Court’s
general personal jurisdiction.” (Id.)

14.  Venue is proper in this District pursuant to 28 U.S.C. 88 1391(b) and (c) and 28
U.S.C. § 1400(b) because Defendant Nvidia Corporation has regular and systematic contacts
within this District and has committed acts of infringement within this District.

15. Defendant Nvidia Corporation is a registered business in Texas and has regular and
established places of business in this District. Nvidia has an office in this District located at 11001
Lakeline Blvd, Suite 100 Bldg. 2, Austin, Texas 78717. (See https://craft.co/nvidia.) Nvidia’s
Austin office has 54,000 SF of new shell office and DVS labs” and “35,000 SF of offices, testing
and software labs.” (See https://kiddgrp.com/project/nvidia-corporation/.)

16. Defendant Nvidia Corporation has hundreds of employees in this District—
including positions in engineering, sales, marketing, and finance. LinkedIn lists approximately 792
persons associated with Nvidia and identified as being located in the Austin or Austin metropolitan
area. (See
https://www.linkedin.com/company/nvidia/people/?facetGeoRegion=104472865%2C90000064.)

LinkedIn also lists approximately 1,158 persons associated with Nvidia and identified as being
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located in the State of Texas. (See id.)

17. In addition, Defendant Nvidia Corporation has over 100 jobs posted for the State
of Texas on its affiliated Workday page with approximately 93 of those jobs—the vast majority of
which are engineering jobs—Iisted for Austin, Texas. (See
https://nvidia.wd5.myworkdayjobs.com/NVIDIAExternalCareerSite?locations=91336993fab910
af6d702939a7fcc2d9&Iocations=91336993fab910af6d702b631b94c2de  (approximately 111
Nvidia job postings for Texas).) These jobs are particularly relevant to the Asserted Patents and
Accused Products, as defined below, because they pertain to artificial intelligence, machine
learning, deep learning, data centers, accelerated computing, high performance computing
(“HPC”), and related hardware, software, and/or firmware—including Nvidia’s GPUs, CPUs,
systems-on-a-chip (“SoCs”), platforms, and application programming interfaces.

18.  Nvidia’s operations in this District include client outreach and sales for each of the
Accused Products and related or supporting services. As detailed above, Nvidia has customer-
facing personnel and operations in this District. Nvidia also provides technical support to partners
and customers for its products in the District.

19. Nvidia has committed acts of infringement within this District. Nvidia uses the
Accused Products in this District in manners that practice the Asserted Patents, including by testing
the Accused Products and by using the Accused Products at its offices and premises in this District.

20.  Defendant makes, uses, advertises, offers for sale, and/or sells hardware for
accelerated computing, including GPUs, CPUs, and SoCs; computers for accelerated computing
(e.g., supercomputers, servers, and data centers for high performance computing); and computer
platform software-as-a-service (“SaaS”) that implements accelerated computing (including the

Accused Products) in the State of Texas and in this District directly and/or through its partnerships
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with businesses in the State of Texas and in this District. Defendant also provides data center and
HPC services that practice the Asserted Patents in the State of Texas and in this District directly
and/or through its partnerships with businesses in the State of Texas and in this District.

21. Nvidia sells, offers for sale, advertises, makes, installs, and/or otherwise provides
hardware, software, firmware, and/or computer platforms for accelerated computing and data
center and HPC services, including the Accused Products, the use of which infringes the Asserted
Patents in this District and the State of Texas. (See https://www.nvidia.com/en-us/data-
center/solutions/accelerated-computing/.) Nvidia performs these acts directly and/or through its
partnerships with other entities. (See id. (“NVIDIA has defined a range of accelerated platforms
that each consist of hardware systems designed according to the needs of the use case as well as
the software stack that enables the operation and management of the business applications. These
hardware systems and software are available from NVIDIA and our partners.”).)

22. Nvidia also uses a network of partners, which comprise re-sellers, managed service
providers, and product and solution experts, to provide the Accused Products and implementation
services for the Accused Products to customers in this District. Each of these partners sells, offers
for sale, installs, and/or implements Nvidia’s accelerated computing hardware, software, and/or
computer platform services. (See https://www.nvidia.com/en-us/about-nvidia/partners/.)

23. Nvidia’s partners include “Data Center Provider[s].” (See
https://www.nvidia.com/en-us/about-nvidia/partners/.) Nvidia’s Data Center Provider partners
“offer colocation services such as high-density data center facilities, interconnected infrastructure,
and state-of-art cooling technologies for hosting NVIDIA DGX™ servers globally.” (See id.)
Nvidia’s Data Center Provider partners in the “NVIDIA DGX-Ready Data Center program, built

on the NVIDIA DGX™ platform and delivered by NVIDIA partners,” help “accelerate the scaling
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of Al across [a customer’s] organization.” (See https://www.nvidia.com/en-us/data-
center/colocation-partners/#aligned-energy.)

24.  As further detailed below, Nvidia engages in activities that directly infringe the
Asserted Patents within this District. For example, Nvidia’s operation and use of its accelerated
computing hardware, software, and/or computer platform services, including its data center-scale
accelerated computing platforms, within this District infringe the Asserted Patents.

25. Nvidia also infringes (directly or indirectly) the Asserted Patents by providing
services in connection with the Accused Products including installing, maintaining, supporting,
operating, providing instructions, and/or advertising Nvidia’s computer platform, data center, and
HPC services within this District. For example, under Nvidia’s cloud and data center line of
products and services, the Nvidia DGX platform is a “a fully integrated hardware and software Al
platform” and “combines the best of NVIDIA software, infrastructure, and expertise in a modern,
unified Al development solution.” (See https://www.nvidia.com/en-us/data-center/dgx-platform/.)
Indeed, “DGX infrastructure is a complete Al solution, and includes NVIDIA Al Enterprise
software to accelerate data science pipelines and streamline development and deployment of
production-grade Al applications.” (See id.) Nvidia platform user and partner customers infringe
the Asserted Patents by installing and operating Nvidia’s computer platform software, which
performs the claimed methods in the Asserted Patents within this District. (See also, e.g.,
https://www.nvidia.com/en-us/data-center/products/ai-enterprise/  (Nvidia Al  Enterprise);
https://developer.nvidia.com/cuda-zone (Nvidia CUDA Toolkit); https://www.nvidia.com/en-
us/data-center/gpu-cloud-computing/ (GPU Cloud Computing).)

26. Defendant encourages and induces its customers of the Accused Products to

perform the methods claimed in the Asserted Patents. For example, Nvidia makes its accelerated
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computing platforms and services available on its website, widely advertises those platforms and
services, provides applications that allow partners and users to access those platforms and services,
provides instructions for installing, and maintaining those platforms and services and supporting
software and/or firmware, and provides technical support to users. (See
https://www.nvidia.com/en-us/data-center/dgx-support/.)

27. Nvidia further encourages and induces its customers to operate Nvidia’s hardware
and software in an infringing manner, and to use Nvidia’s infringing computer platforms, by
providing directions for and encouraging customers to install software, such as software for
NVIDIA Al Enterprise and CUDA, (see https://docs.nvidia.com/ai-enterprise/deployment-guide-
vmware/0.1.0/software.ntml;  https://developer.nvidia.com/cuda-downloads), which  offers
evaluation, installation, configuration, customization, and development of Nvidia’s infringing
software products and services.

28. Defendant also contributes to the infringement of its customers and end users of the
Accused Products by offering within the United States or importing into the United States the
Accused Products, which are for use in practicing, and under normal operation practice, one or
more of the methods claimed in the Asserted Patents, constituting a material part of the inventions
claimed, and not a staple article or commodity of commerce suitable for substantial non-infringing
uses. Indeed, as shown herein, the Accused Products and the example functionality described
below have no substantial non-infringing uses and are specifically designed to practice the methods
claimed in the Asserted Patents.

29.  On information and belief, Defendant has not disputed that venue is proper in this
District in cases filed against it in this District. (See, e.g., Vantage Micro LLC v. NVIDIA Corp.,

No. 6:19-cv-00582, ECF 22; Polaris Innovations Ltd. v. Dell Inc. et al., No. 5:16-cv-00451, ECF
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19; Cirrus Logic, Inc. v. ATI Techs., et al., No. 1:03-cv-00302, ECF 6.)
30. Defendant’s infringement adversely impacts Plaintiff in this District.

PLAINTIFF’S PATENTED INNOVATIONS

31.  The Asserted Patents pioneered the adaptation of GPU-acceleration technology to
the supervised execution of complex artificial intelligence algorithms and numerical simulations,
such that it became possible for the first time to dynamically supervise, review, and correct
intermediate “solutions” that were produced by these accelerated algorithms and simulations
without performance loss.

The GPU-Based Acceleration Patents
U.S. Patent Nos. 8,648,867, RE49.461, and RE48,438

32. The ’867, °461, and 438 Patents are part of the same patent family and generally
disclose and claim systems and methods related to the accelerated execution of numerical
simulations and neural networks such that the intermediate outputs of a given execution “step” can
be dynamically transferred from the GPU to the CPU, reviewed, and corrected within the same
computational cycle before being fed as inputs to the next execution step.

33. The 867 Patent is entitled “Graphic Processor Based Accelerator System and
Method,” was filed on September 24, 2007, and was duly and legally issued by the United States
Patent and Trademark Office (“USPTO”) on February 11, 2014. The *867 Patent claims priority
to Provisional Application No. 60/826,892, filed on September 25, 2006. A true and correct copy
of the *867 Patent is attached as Exhibit 1.

34. The ’438 Patent is entitled “Graphic Processor Based Accelerator System and
Method,” was filed on November 9, 2017, and was duly and legally issued by the USPTO on
February 16, 2021. The ’438 Patent is a re-issue of the ’867 Patent and claims priority to

Provisional Application No. 60/826,892, filed on September 25, 2006. A true and correct copy of
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the 438 Patent is attached as Exhibit 2.

35.  The ’461 Patent is also entitled “Graphic Processor Based Accelerator System and
Method,” was filed on December 29, 2020, and was duly and legally issued by the USPTO on
March 14, 2023. The ’461 Patent is a re-issue of the 867 Patent and claims priority to Provisional
Application No. 60/826,892, filed on September 25, 2006. A true and correct copy of the *461
Patent is attached as Exhibit 3.

36. The *867 Patent improves upon prior GPU acceleration technology by disclosing
and claiming a novel hardware and firmware system for performing a numerical simulation that
permits dynamic editing of the outputs that flow from intermediate “steps” of that simulation,
before they become inputs to the next “step.” In particular, the 867 patent discloses a CPU tethered
to a GPU-based accelerator, each with their own corresponding memories, and an accelerator
“controller” that coordinates transfers of data between the CPU and the GPU-based accelerator,
such that the intermediate results from one step can be transferred from the GPU-based accelerator
to the CPU, reviewed and corrected by the CPU, and transferred back to the GPU-based accelerator
before the next computational cycle begins.

37. The 867 Patent explains that performing the numerical computation in this
stepwise fashion enables the system to eliminate “race conditions,” i.e., conflicts that occur when
two programmatic “threads” attempt to change the same shared data at the same time, which would
otherwise occur when other system elements attempt to access intermediate outputs of the
numerical computation. (See ’867 Patent, 5:60-6:31). This avoids the computational overhead
prevalent in conventional GPU-based accelerator architectures when transferring data from the
accelerator to the CPU.

38. By enabling such “controller-driven data exchange” between the GPU-based

10
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accelerator and the CPU, the system described in the 867 Patent allows for an “input parser”
executing on a CPU core to “change input...on the fly during the simulation,” thus enabling
automatic review and dynamic error correction of the numerical simulations or neural networks
that are being executed on the claimed system. (See id., 9:8-17). Such dynamic, in-execution
review and error correction of whether each intermediate “step” of a simulation or neural network
IS generating correct results is essential to the performance and reliability of large language models,
image classification, and image generation models that have become prevalent today. Because of
the scale to which such simulations and models have grown, it is no longer feasible to “restart”
them from scratch, only to correct them as they execute.

39. The *461 and *438 Patents disclose hardware and firmware configurations similar
to those of the *867 Patent, but are directed to using those configurations to process the layers of
an artificial neural network (“ANN”). The 461 Patent is directed to further interplay between the
CPU and the GPU-based accelerator: separating the CPU and GPU-based accelerator into separate
“streams,” whereby the CPU executes a “user interaction stream” (e.g., enabling the parsing and
dynamic editing of intermediate outputs, or for the ANN to be paused and resumed), while the
accelerator executes a “computational stream” that executes the layers of the artificial neural
network. When the ANN is initialized, control over the generation of outputs shifts to the
computational stream. However, once a pre-defined layer of the ANN has completed execution,
or is interrupted, control over the generation of outputs and feeding of inputs is shifted back to the
CPU’s user interaction stream.

40. The Asserted Patents describe this “shift of priorities” as “[t]he crucial feature of
the interaction between the User Interaction Stream and the Computational Stream.” (867 Patent,

7:45-47). Even though the computational stream is in control during the ANN computation,

11
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priority shifting enables “[t]he user [to] retain[] the ability to interrupt the simulation, change the
input, or to change the display properties of the framework” because the user’s “interactions are
queued to be performed at times determined by the controller-driven data exchange to avoid

corruption of the data.” (Id., 8:47-57).

ACCUSED PRODUCTS

41. Nvidia offers, sells, and uses several products that provide and implement GPU-
acceleration hardware, software, platforms, and services for individuals and enterprises and
incorporate Plaintiff’s  patented  technologies. (See https://www.nvidia.com/en-
us/solutions/ai/inference/; https://marketplace.nvidia.com/en-us/data-center/?page=4;
https://marketplace.nvidia.com/en-us/laptops-workstations/?page=9;
https://marketplace.nvidia.com/en-us/software/?page=3.)

42.  The Accused Products include Nvidia’s GPU accelerators and superchips. (See
https://resources.nvidia.com/l/en-us-gpu.) Nvidia’s GPU accelerators include Nvidia’s GPUs with
Nvidia’s “Hopper,” “Ada Lovelace,” “Ampere,” “Turing,” “Volta,” “Pascal,” and “Maxwell”
GPU architectures. (See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-896/support-
matrix/index.html.) These GPUs are specifically designed to run and implement GPU-based
hardware acceleration using Nvidia’s proprietary CUDA (Compute Unified Device Architecture)
platform and CUDA libraries for GPU acceleration. (See id. (Nvidia GPU architectures
implementing Nvidia’s cuDNN (CUDA Deep Neural Network) library for GPU acceleration.);
https://developer.nvidia.com/cuda-gpus.)

43.  Nvidia’s Hopper GPUs include the H100 and H200 GPUs. (See
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/ (Hopper

architecture); https://www.nvidia.com/en-us/data-center/h100/ (H100);

12



Case 7:24-cv-00221 Document 1 Filed 09/13/24 Page 13 of 93

https://www.nvidia.com/en-us/data-center/n200/ (H200).) In addition, Nvidia’s superchips that
implement GPU accelerators include the GH200, or Grace Hopper Superchip, which implements
the Hopper-GPU architecture. (See https://www.nvidia.com/en-us/data-center/grace-hopper-
superchip/ (GH200).)

44,  Nvidia’s Ada Lovelace (or Lovelace) GPUs include Nvidia Data Center GPUs,
including L40, L40S, and L4 GPUs; Nvidia Workstation and Professional Laptop GPUs, including
RTX Ada Generations series GPUs and Laptop GPUs; and GeForce RTX 40 series GPUs and
Laptop GPUs. (See https://www.nvidia.com/en-us/technologies/ada-architecture/ (Ada Lovelace
architecture). See https://www.nvidia.com/en-us/data-center/140/ (L40);
https://www.nvidia.com/en-us/data-center/140s/  (L40S); https://www.nvidia.com/en-us/data-
center/l14/ (L4). See https://resources.nvidia.com/en-us-design-viz-stories-ep/l140-linecard (Nvidia
Professional GPUs); https://www.nvidia.com/en-us/ai-on-rtx/ (RTX GPUs featuring “Accelerated
Development”); https://www.nvidia.com/en-us/design-visualization/desktop-graphics/ (RTX Ada
Generation GPUs); https://www.nvidia.com/en-us/design-visualization/rtx-professional-
laptops/compare-table/ (RTX Ada Generation Laptop GPUSs). See https://www.nvidia.com/en-
us/geforce/graphics-cards/40-series/ (GeForce RTX 40 GPUs); https://www.nvidia.com/en-
us/geforce/graphics-cards/compare/ (GeForce RTX 40 GPUs); https://www.nvidia.com/en-
us/geforce/laptops/compare/ (GeForce RTX 40 Laptop GPUs).)

45.  Nvidia’s Ampere GPUs include Nvidia Data Center GPUs, including A100, A40,
A30, A16, Al10, and A2 GPUs; Nvidia Workstation and Professional Laptop GPUs, including
RTX A series GPUs and Laptop GPUs; GeForce RTX 30 series GPUs and Laptop GPUs; and
GeForce MX570 Laptop GPU. (See https://www.nvidia.com/en-us/data-center/ampere-

architecture/ (Ampere architecture). See https://www.nvidia.com/en-us/data-center/a100/ (A100);

13
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https://www.nvidia.com/en-us/data-center/a40/  (A40);  https://www.nvidia.com/en-us/data-
center/a30/ (A30); https://www.nvidia.com/en-us/data-center/al6/ (A16);
https://www.nvidia.com/en-us/data-center/al0/  (Al10);  https://www.nvidia.com/en-us/data-
center/a2/ (A2). See https://www.nvidia.com/en-us/design-visualization/desktop-graphics/ (RTX
A GPUs); https://www.nvidia.com/en-us/design-visualization/rtx-professional-laptops/compare-
table/ (RTX A Laptop GPUs). See https://www.nvidia.com/en-us/geforce/graphics-cards/30-
series/; (GeForce RTX 30 GPUs) https://www.nvidia.com/en-us/geforce/graphics-cards/compare/
(GeForce RTX 30 GPUs); https://www.nvidia.com/en-us/geforce/laptops/compare/30-series/
(GeForce RTX 30 Laptop GPUs); https://www.nvidia.com/en-us/geforce/gaming-laptops/mx-
570/ (GeForce MX570 Laptop GPU).)

46.  Nvidia’s Turing GPUs include Nvidia Data Center GPUSs, including Tesla T4 GPUs
and Quadro RTX 8000 (passive) and Quadro RTX 6000 (passive) GPUs; Nvidia Workstation and
Professional Laptop GPUs, including T series GPUs and Laptop GPUs, Quadro T series Laptop
GPUs, and Quadro RTX series GPUs and Laptop GPUs; Titan series Titan RTX GPU;
GeForce RTX 20 series and GeForce GTX 16 series GPUs and Laptop GPUs; and GeForce
MX550, MX450, and MX430 Laptop GPUs. (See https://www.nvidia.com/en-us/geforce/turing/
(Turing architecture). See https://www.nvidia.com/en-us/data-center/tesla-t4/ (Tesla T4);
https://www.nvidia.com/en-gb/design-visualization/quadro-data-center/ (Quadro RTX 8000
(passive) and Quadro RTX 6000 (passive). See https://www.nvidia.com/en-us/design-
visualization/quadro/ (T series GPUs/Laptop GPUs, Quadro T series Laptop GPUs, and Quadro
RTX GPUs/Laptop GPUs); https://www.nvidia.com/en-us/design-visualization/desktop-graphics
(T series GPUs/Laptop GPUs); https://www.nvidia.com/content/dam/en-

zz/Solutions/titan/documents/titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf (Titan RTX);

14
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https://www.nvidia.com/en-us/geforce/20-series/ (GeForce RTX 20 GPUs);
https://www.nvidia.com/en-us/geforce/graphics-cards/compare/ (GeForce RTX 20 GPUs and
GeForce GTX 16 GPUs); https://www.nvidia.com/en-us/geforce/gaming-laptops/compare-20-
series/ (GeForce RTX 20 Laptop GPUs);  https://www.nvidia.com/en-us/geforce/gaming-
laptops/compare-16-series/ (GeForce GTX 16 Laptop GPUs);  https://www.nvidia.com/en-
us/geforce/gaming-laptops/mx-550/ (GeForce MX550 Laptop GPU); https://www.nvidia.com/en-
us/geforce/gaming-laptops/mx-450/ (GeForce MX450 Laptop GPU);
https://wccftech.com/nvidia-geforce-mx450-turing-discrete-notebook-gpu-gddr6-pcie-4/
(GeForce M Laptop GPUs).)

47.  Nvidia’s Volta GPUs include Nvidia Data Center GPUs, including the Tesla V100
GPU; Nvidia Workstation GPUs, including Quadro GV100; and Titan series Titan V GPU. (See
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/ (Volta architecture);
https://www.nvidia.com/en-us/data-center/v100/ (Tesla V100);
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-
704619-r3-web.pdf (Quadro GV100); https://nvidianews.nvidia.com/news/nvidia-titan-v-
transforms-the-pc-into-ai-supercomputer (Titan V).)

48. Nvidia’s Pascal GPUs include Nvidia Data Center GPUs, including Tesla P100,
P40, and P4 GPUs; Nvidia Workstation and Professional Laptop GPUs, including the
Quadro GP100 GPU and Quadro P series GPUs and Laptop GPUs; Titan series Titan Xp and Titan
X GPUs; GeForce GTX 10 series GPUs and Laptop GPUs; and GeForce MX300 series, MX200
series, and MX150 Laptop  GPUs.  (See  https://developer.nvidia.com/pascal;

https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/ (Pascal architecture). See

15



Case 7:24-cv-00221 Document 1 Filed 09/13/24 Page 16 of 93

https://www.nvidia.com/en-us/data-center/tesla-p100 (Tesla P100);
https://developer.nvidia.com/cuda-gpus (Tesla P40 and P4);
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/productspage/quadro/quadro-desktop/quadro-pascal-gp100-data-sheet-us-nv-
704562-rl.pdf (Quadro GP100); https://www.nvidia.com/en-us/design-visualization/quadro/
(Quadro P series GPUs/Laptop GPUs). See https://www.nvidia.com/content/geforce-
gtx/NVIDIA_TITAN_X_USER_GUIDE_v02.pdf (Titan X);
https://www.nvidia.com/content/geforce-gtx/NVIDIA_TITAN_Xp USER_GUIDE_v02.pdf
(Titan Xp); https://www.nvidia.com/en-us/geforce/10-series/ (GeForce GTX 10);
https://www.nvidia.com/en-us/geforce/graphics-cards/compare/  (GeForce  GTX 10 GPUs);
https://www.nvidia.com/en-us/geforce/news/gfecnt/nvidia-geforce-gtx-10-series-laptops/
(GeForce GTX 10 Laptop GPUs); https://www.nvidia.com/en-us/geforce/gaming-laptops/mx-
350/ (GeForce MX350 Laptop GPU); https://www.nvidia.com/en-us/geforce/gaming-laptops/mx-
330/ (GeForce MX330 Laptop GPU); https://wccftech.com/nvidia-geforce-mx450-turing-
discrete-notebook-gpu-gddr6-pcie-4/ (GeForce M Laptop GPUs).)

49.  Nvidia’s Maxwell GPUs include Nvidia Data Center GPUs, including Tesla M60,
M40, and M10 GPUs; Nvidia Workstation and Professional Laptop GPUs, including Quadro M
series GPUs and Laptop GPUs, the NVS 810 GPU, and Tesla M6 series Laptop GPUs; Titan series
GTX Titan X GPU; GeForce GTX 900 series and GeForce GTX 700 series GPUs and Laptop

GPUs; and GeForce MX130 series and MX110 Laptop GPUs. (See

https://developer.nvidia.com/blog/maxwell-most-advanced-cuda-gpu-ever-made/ (Maxwell
architecture); https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/solutions/resources/documentsl/nvidia-m60-datasheet.pdf (M60);
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https://images.nvidia.com/content/tesla/pdf/78071_Tesla_M40 24GB_Print_Datasheet LR.PDF
(M40); https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-
m10/pdf/188359-Tesla-M10-DS-NV-Aug19-A4-fnl-Web.pdf (M10);
https://www.nvidia.com/en-us/design-visualization/quadro/ (Quadro M GPUs/Laptop GPUs);
https://www.nvidia.com/docs/10/146527/nvs-810-datasheet.pdf (NVS 810);
https://images.nvidia.com/content/tesla/pdf/188300-Tesla-M6-DS-Aug19-A4-fnl-Web.pdf (Tesla
M6); https://www.nvidia.com/content/geforce-gtx/GTX_TITAN_X_ User_Guide.pdf (GTX Titan
X); https://developer.nvidia.com/maxwell-compute-architecture (GeForce GTX 900 and 700
GPUs/Laptop GPUSs); https://wccftech.com/nvidia-geforce-mx450-turing-discrete-notebook-gpu-
gddr6-pcie-4/ (GeForce M Laptop GPUs).

50.  These GPUs and superchips implement, and are specifically designed for, GPU-
acceleration for artificial intelligence and neural networks. Nvidia’s proprietary CUDA platform
for parallel computing, which includes GPU-acceleration libraries such as cuDNN (CUDA Deep
Neural Network), is implemented in the Nvidia Hopper, Ada Lovelace, Ampere, Turing, Volta,

Pascal, and Maxwell GPU architectures.
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1. GPU, CUDA Toolkit, and CUDA Driver Requirements

The following sections highlight the compatibility of NVIDIA® cUDNN versions with the various supported NVIDIA CuUDA® Toolkit, CUDA driver, and
MNVIDIA hardware versions.

Table 1. GPU, CUDA Toolkit, and CUDA Driver Requirements

cUDNN Package CUDA Toolkit Supports static NVIDIA Driver Version CUDA Compute Supported NVIDIA
Versio inking?” . N apability
Version linking?” Linux Windows Capability, Hardware
CcuDNN B.9.6 for 122 Yes ==325.60.13 ==527.41 g9.0°
CUDA 12.x - -
121 No 5o NVIDIA Hopper™-=
120 oo NVIDIA Ada
cuDNN B8.9.6 for 11.8 Yes ==450.80.02 ==45239 ’ Lovelace
CUDA 11.x . o 80 architecture®
116 7.5 NVIDIA Ampere
) architecture
115 7.0
MNVIDIA Turing™
114 6.1
MNVIDIA Volta™
13 6.0
NVIDIA Pascal™
1127 50 .
NYVIDIA Maxwe
11.12
11.o?

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-896/support-matrix/index.html
(emphasis added).)

51.  The Accused Products further include Nvidia’s supercomputers and servers that
implement its GPU accelerators and superchips. These supercomputers and servers include: the
EGX line of servers for data centers and edge devices, the HGX line of supercomputers, the DGX
line of supercomputers, and the OV X line of supercomputers. (See https://www.nvidia.com/en-
us/data-center/solutions/accelerated-computing/.)

52.  Nvidia’s “EGX hardware portfolio” includes “accelerators [that] combine the
performance of NVIDIA Ampere GPUs.” (See https://www.nvidia.com/en-us/data-
center/products/egx/; see https://www.nvidia.com/en-us/design-visualization/egx-graphics/.)
Nvidia’s HGX “Al supercomputing platform brings together the full power of NVIDIA GPUs,
NVIDIA NVLink™ NVIDIA networking, and fully optimized Al and high-performance
computing (HPC) software stacks.” (See https://www.nvidia.com/en-us/data-center/hgx/;

https://nvdam.widen.net/s/5kgbjg2v2t/hpc-hgx-h100-datasheet-nvidia-web.)  One  example
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configuration includes “four or eight H200 or H100 GPUs.” (See id.; see
https://nvdam.widen.net/s/5kgbjg2v2t/hpc-hgx-h100-datasheet-nvidia-web.)  Nvidia’s DGX
supercomputers include the DGX H200, DGX BasePOD, and DGX SuperPOD with DGX GB200.
(See https://www.nvidia.com/en-us/data-center/dgx-platform/; see also
https://www.nvidia.com/en-us/data-center/base-command/;  https://resources.nvidia.com/en-us-
dgx-software/nvidia-base-command (DGX Base Command operating system for DGX data
centers.) And Nvidia’s OVX supercomputers implement “L40S GPUs . . . for both complex Al
and graphics-intensive workloads.” (See https://www.nvidia.com/en-us/data-center/products/ovx/;
see https://resources.nvidia.com/en-us-ovx/ovx-datasheet.)

53.  The Accused Products further include Nvidia’s software, platforms, and services
for accelerated computing. These include CUDA, Nvidia Al Enterprise, the DGX Platform, Nvidia
Omniverse, Nvidia Drive, Nvidia Isaac Sim, and Nvidia NGC.

54. CUDA is Nvidia’s proprietary “parallel computing platform and programming
model.” (See https://developer.nvidia.com/cuda-zone.) CUDA is designed to support Nvidia’s
GPU accelerators and superchips and includes software specifically for GPU-acceleration such as
the cuDNN “GPU-accelerated library.” (See id.; https://developer.nvidia.com/cudnn.) In addition,
Nvidia’s CUDA-X, built on top of CUDA, is a collection of “GPU-accelerated microservices and
libraries for Al.” (See https://www.nvidia.com/en-us/technologies/cuda-x/.) Nvidia also offers the
CUDA Toolkit and SDK Manager for developing GPU-accelerated applications. (See
https://developer.nvidia.com/cuda-toolkit; https://developer.nvidia.com/sdk-manager.)

55. In addition, Nvidia Al Enterprise is Nvidia’s “end-to-end, cloud-native software
platform” for “accelerat[ing] data science pipelines . . . and other generative Al applications.” (See

https://www.nvidia.com/en-us/data-center/products/ai-enterprise/.) It is Nvidia’s “‘operating
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system’ for enterprise Al.” (See id.)

56. In addition, Nvidia’s DGX platform is “is a complete Al solution, and includes
NVIDIA Al Enterprise software.” (See https://www.nvidia.com/en-us/data-center/dgx-platform/.)
Nvidia DGX Cloud is “an Al-training-as-a-service platform which includes cloud-based
infrastructure and software for Al, customizable pretrained Al models, and access to NVIDIA
experts.” (See https://d18rnOp25nwr6d.cloudfront.net/CIK-0001045810/1cbe8fe7-e08a-46e3-
8dcc-b429fc06¢1ad.pdf, Nvidia U.S. Securities and Exchange Commission Form 10-K for Fiscal
Year Ended January 28, 2024 at 6.)

57. In addition, Nvidia Omniverse is “a development platform and operating system
for building virtual world simulation applications, available as a software subscription.” (See
https://d18rn0p25nwr6d.cloudfront.net/CIK-0001045810/1cbe8fe7-e08a-46e3-8dcc-
b429fc06clad.pdf, Nvidia U.S. Securities and Exchange Commission Form 10-K for Fiscal Year
Ended January 28, 2024 at 6.) Nvidia Omniverse implements software and services “into existing
software tools and simulation workflows for building Al  systems.” (See
https://www.nvidia.com/en-us/omniverse/.)

58. In addition, Nvidia Drive is a platform that “consists of both the Al infrastructure
and in-vehicle hardware and software” for autonomous vehicles. (See https://www.nvidia.com/en-
us/self-driving-cars/.) “NVIDIA DRIVE Infrastructure encompasses data center hardware,
software, and workflows—both on premises and in NVIDIA DGX Cloud & Omniverse.” (See id.)

59. In addition, Nvidia Isaac Sim is a platform that enables “developers to design,
simulate, test, and train Al-based robots and autonomous machines in a physically-based virtual
environment.” (See https://developer.nvidia.com/isaac/sim.) It is built on Nvidia Omniverse. (See

id.)
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60. In addition, Nvidia NGC is a collection of software services and tools that support
“end-to-end Al and digital twin workflows” that runs on “NVIDIA GPU-accelerated platforms.”
(See https://www.nvidia.com/en-us/gpu-cloud/.) NGC “offers a collection of cloud services . . .
for generative Al, drug discovery, and speech Al solutions, and the NGC Private Registry for

securely sharing proprietary Al software.” (See id.)

FIRST CAUSE OF ACTION
(INFRINGEMENT OF THE ’867 PATENT)

61.  Plaintiff realleges and incorporates by reference the allegations of the preceding
paragraphs of this Complaint.

62. Defendant has infringed and continues to infringe one or more claims of the 867 Patent
in violation of 35 U.S.C. § 271 in this District and elsewhere in the United States and will continue to
do so. The Accused Products, including features of, e.g., the Grace Hopper Superchip (GH200), at least
when used for their ordinary and customary purposes, practice each element of at least claim 16 of the
’867 Patent as demonstrated below.

63.  For example, claim 16 of the 867 Patent recites:

16. A method for performing a numerical simulation on input data
in a computer system including a central processing unit and an

accelerator, the method comprising:

receiving, by an accelerator, first input data from the central
processing unit;

transferring, by an accelerator controller, the first input data into a
first partition, referenced by first pointer, of an accelerator memory
before a first computational cycle of the numerical simulation;

performing, by at least one graphics processing unit during the first

computational cycle, at least one calculation on the first portion of
the input data as to generate first output data;
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storing, by the accelerator controller, the first output data into a
second partition, referenced by a second pointer, of the accelerator
memory; and

swapping the first pointer with the second pointer at the end of the
first computational cycle, such that the first output data becomes an
input for a second computational cycle of the numerical simulation.

64.  The Accused Products perform each step of the method of claim 16 of the ’867
Patent. To the extent the preamble is construed to be limiting, the Accused Products perform a
method for performing a numerical simulation on input data in a computer system including a
central processing unit and an accelerator, as further explained below. For instance, the Grace

Hopper Superchip (GH200) “brings together the groundbreaking performance of the NVIDIA

Hopper GPU with the versatility of the NVIDIA Grace™ CPU . . . in a single Superchip.”

Inside NVIDIA’s First GPU-CPU Superchip
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The NVIDIA® GH200 Grace Hopper architecture brings together the groundbreaking
performance of the NVIDIA Hopper GPU with the versatility of the NVIDIA Grace™ CPU
connected with a high bandwidth and memory coherent NVIDIA NVLink Chip-2-Chip
(C2C)% interconnect in a single Superchip, and support for the new NVIDIA NVLink
Switch System.

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

65.  The “Grace Hopper Superchip is the first true heterogeneous accelerated platform
for high-performance computing (HPC) and Al workloads. It accelerates applications with the
strengths of both GPUs and CPUs while providing the simplest and most productive heterogeneous

programming model to date.”

The NVIDIA GH200 Grace Hopper Superchip is the first true heterogensous accelerated
platform for high-performance computing (HPC) and Al workloads. It accelerates
applications with the strengths of both GPUs and CPUs while providing the simplest and
most productive heterogeneous programming model to date, enabling scientists and
engineers to focus on solving the world's most important problems. Together with
NVIDIA networking technologies, NVIDIA GH200 provides the recipe for the next
generation of HPC supercomputers and Al factories, enabling customers to take on
larger datasets, more complex models, and new workloads, solving them more quickly
than before.

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

66. In addition, the Accused Products, including the Grace Hopper Superchip,
implement CUDA, Nvidia’s proprietary “parallel computing platform and programming model.”
CUDA enables NVIDIA GPUs to be used for general purpose computing tasks. CUDA further
includes the CUDA Toolkit, which “includes GPU-accelerated libraries, a compiler, development
tools and the CUDA runtime.” As an example, the “CUDA® Deep Neural Network library
(cuDNN) is a GPU-acceleration library of primitives for deep neural networks.” It “provides

highly tuned implementations for standard routines” for GPU-based acceleration.
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CUDA Zone

CUDA® is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing

units (GPUs). With CUDA, developers are able to dramatically speed up computing applications by harnessing the power of GPUs.

In GPU-accelerated applications, the sequential part of the workload runs on the CPU - which is optimized for single-threaded
performance - while the compute intensive portion of the application runs on thousands of GPU cores in parallel. When using CUDA,
developers program in popular languages such as C, C++, Fortran, Python and MATLAB and express parallelism through extensions in

the form of a few basic keywords.

The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-accelerated applications. The CUDA Toolkit includes GPU-
accelerated libraries, a compiler, development tools and the CUDA runtime.

(See https://developer.nvidia.com/cuda-zone. (emphasis added))

NVIDIA cuDNN

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of

primitives for deep neural networks. cuDNN provides highly tuned implementations for

standard routines such as forward and backward convolution, attention, matmul, poocling,

and normalization.

(See https://developer.nvidia.com/cudnn (emphasis added).)
67. Nvidia GPU architectures that implement CUDA and cuDNN include the Hopper
(e.g., Grace Hopper Superchip (GH200), H100), Ada Lovelace, Ampere, Turing, Volta, Pascal,

and Maxwell GPU architectures of the Accused Products.
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The following sections highlight the compatibility of NVIDIA® cUDNN versions with the various supported NVIDIA CuUDA® Toolkit, CUDA driver, and
MNVIDIA hardware versions.

Table 1. GPU, CUDA Toolkit, and CUDA Driver Requirements
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CUDNN Package! | CUDA Toolkit Supports static NVIDIA Driver Version CUDA Compute Supported NVIDIA
vVarci - . 2 P
Version linking?? Linux Windows Capability Hardware
cuDNMN B8.9.6 for 122 Yes ==325.60.13 ==527.41 g9.0°
CUDA 12.x - -
12.1 No st NVIDIA Hopper™>
120 o6 NVIDIA Ada
cuDNN B8.9.6 for 11.8 Yes ==450.80.02 ==45239 ’ Lovelace
CUDA 11.x 17 o 80 architecture®
116 75 N\’IQIA Ampere
architecture
115 7.0
MNVIDIA Turing™
11.4 6.1
MNVIDIA Volta™
113 50
NVIDIA Pascal™
1z’ 50 )
NVIDIA Maxwe
11.1
10°

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-896/support-matrix/index.html

(emphasis added).)

68.

The Accused Products perform a method that includes receiving, by an accelerator,

first input data from the central processing unit. For instance, the “CUDA programming model”

implements programming functions and instructions for CPUs and GPUs. “The host is the CPU

available in the system” and “system memory associated with the CPU is called host memory.”

“The GPU is called a device and GPU memory likewise called device memory.” As an example,

the first main CUDA program execution step is “[c]opy[ing] the input data from host [CPU]

memory to device [GPU] memory, also known as host-to-device transfer.”
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Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU

is called host memaory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device

transfer.
« Load the GPU program and execute, caching data on-chip for performance.
« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added).)

69.  The Accused Products practice a method that includes transferring, by an
accelerator controller, the first input data into a first partition, referenced by first pointer, of an
accelerator memory before a first computational cycle of the numerical simulation. For instance,
the GPU architecture of the Accused Products implements a controller. As an example, the
Hopper-GPU architecture implements “HBM3 memory controllers” including “12 512-bit
memory controllers” coupled GPU memory including “6 HBM3 or HBM2e stacks,” “80 GB

HBM3, 5 HBM3 stacks,” and “80 GB HBM2e¢, 5 HBM2e stacks.”

The NVIDIA GH100 GPU is composed of multiple GPU processing clusters (GPCs), texture

processing clusters (TPCs), streaming multiprocessors (SMs), L2 cache, and HBM3

memory controllers.
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The full implementation of the GH100 GPU includes the following units:

e 8GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU

o 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU
» 4 fourth-generation Tensor Cores per SM, 576 per full GPU

« 6 HBM3 or HBMZ2e stacks, 12 512-bit memory controllers

e« 60 MB L2 cache

» Fourth-generation NVLink and PCle Gen 5

The NVIDIA H100 GPU with SXM5 board form-factor includes the following units:

« 8GPCs, 66 TPCs, 2 SMs/TPC, 132 SMs per GPU

128 FP32 CUDA Cores per SM, 16896 FP32 CUDA Cores per GPU
4 fourth-generation Tensor Cores per SM, 528 per GPU

80 GB HEM3, 5 HBM3 stacks, 10 512-bit memory controllers

50 MB L2 cache

Fourth-generation NVLink and PCle Gen 5

The NVIDIA H100 GPU with a PCle Gen 5 board form-factor includes the following units:

e 7 or 8 GPCs, 57 TPCs, 2 SMs/TPC, 114 SMs per GPU

» 128 FP32 CUDA Cores/SM, 14592 FP32 CUDA Cores per GPU

« 4 fourth-generation Tensor Cores per SM, 456 per GPU

« 80 GB HBMZ2e, 5 HBMZ2e stacks, 10 512-bit memory controliers
« 50MB L2 cache

« Fourth-generation NVLink and PCle Gen 5

(See https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ (emphasis added).)
70.  The Accused Products implement CUDA, Nvidia’s parallel computing platform.
CUDA enables NVIDIA GPUs to be used for general purpose computing tasks and includes
specialized GPU-acceleration libraries such as cuDNN. Examples of parameters used in CUDA
include pointers “dst” (“Destination memory address”) and “src” (“Source memory address”). For
instance, exemplary CUDA function “cudaMemcpy” copies “bytes [data] from the memory area

pointed to by src [source memory address pointer] to the memory area pointed to by dst
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[destination memory address pointer], where kind [type of transfer] specifies the direction of the

copy.” One of the destinations is “cudaMemcpyHostToDevice,” or host (CPU) to device (GPU).

_ _host__ cudaError_t cudaMemcpy ( void* dst , const void*® src |, size_t count , cudaMemcpyKind kind )

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
count

- Size In bytes to copy
kind

- Type of transfer

Returns

Description

Copies count bytes from the memory area pt}lnted to by src to the memory area pelnted to by dst , where kind specifies
the dlrectlon ofthe cogy and must be one of ¢ lemcpyHost ._—_5'..|t_.:-_. emcpyHost ToDevice, |

cudaMem C H emcpyDev ';':Ze._— orc ef Passmg efault is
recommended in WhICh case the type of transfer is inferred from the Qomter values However C Default is only
allowed on systems that support unified virtual addressing. Calling c demcpy() with dst and src pomters ‘that do not match
the direction of the copy results in an undefined behavior.

(See https://docs.nvidia.com/cuda/cuda-runtime-api/group_ CUDART_ MEMORY .html

(emphasis added).)

71.  The Accused Products practice a method that includes performing, by at least one
graphics processing unit during the first computational cycle, at least one calculation on the first
portion of the input data as to generate first output data. For instance, CUDA uses “‘streams” t0
execute a sequence of commands in order. As shown below, an exemplary CUDA function
“cudaMemcpyAsync” is used to copy data between a host (CPU) and a device (GPU). “Each
stream copies its portion of input array hostPtr [pointer for CPU] to array inputDevPtr in device
[GPU] memory.” The stream then “processes inputDevPtr on the device [GPU] by calling

MyKernel(), and copies the result outputDevPtr back to the same portion of hostPtr.”
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3.2.8.5.1. Creation and Destruction of Streams

A stream is defined by creating a stream object and specifying it as the stream parameter to a sequence of
kernel launches and host =-= device memory copies. The following code sample creates two streams and

allocates an array hostPtr of float in page-locked memory.

cudaStream_t stream[2];

for {(int i = B; i = 2; ++1i)
cudaStreamCreate(&stream[i]);

float* hostPtr,

cudaMallocHost (&hostPtr, 2 * size),

Each of these streams is defined by the following code sample as a sequence of one memory copy from host to

device, one kernel launch, and one memory copy from device to host:

for {int 1 = B, 1 = 2, ++1) {
cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]):
MyKernel ===188, 512, 8, stream[i]===
{outputDevPtr + i * size, inputDevPtr + i * size, size),;
cudaMemcpyAsync({hostPtr + i * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);

Each stream copies its portion of input array hostPtr to array inputDevPir in device memaory, processes

inputDevPtr on the device by calling MyKernel() , and copies the result cutputDevPrr back to the same portion of

hostPtr . Overlapping BEehavior & describes how the streams overlap in this example depending on the capability

of the device. Mote that hestPor must point to page-locked host memory for any overlap to occur.

(See https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#creation-and-
destruction-of-streams (emphasis added).)

72.  The Accused Products practice a method that includes storing, by the accelerator
controller, the first output data into a second partition, referenced by a second pointer, of the
accelerator memory. For instance, exemplary excerpts of CUDA code shown below demonstrate
CUDA being used to calculate a square sub-matrix Csub of matrix C using the function MatMul.
An exemplary CUDA stream “allocate[s] [matrix] C in device memory.” After Matrices A and B
are synchronized and multiplied, the exemplary CUDA stream “[w]rite[s] Csub to device [GPU]

memory.”
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'/ Load A and B to device memory

Matrix d_A;

d_A.width = d_A.stride = A.width; d_A.height = A_height;

gize_t size = A_width * A_height * sizeof(float),;

cudaMalloc(&d_A.elements, size);

cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;

Matrix d_B;

d_B.width = d_B.stride = B.width; d_B.height = B.height,;

gize = B.width * B.height * sizeof(float),

cudaMalloc(&d_B.elements, size);

cudaMemcpy(d_B.elements, B.elements, size,

cudaMemcpyHostToDevice) |

£/ Allocate C In device memary

Matrix d_C;

d_C.width = d_C.stride = C.width; d_C.height = C.height;

gize = C.width * C.height * sizeof(float);

cudaMalloc(&d_C.elements, size);

* * * k%

Ff Synchronize to make sure the sub-matrices are loaded
/7 before starting the computation
__syncthreads( )
£ Multiply Asub and Bsub together
for (int e = 8; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][col]:
'/ Synchronize to make sure that the preceding
S/ computation is done before loading two new
/¢ sub-matrices of

__syncthreads(};

A and B in the next iteration

S Write Csub to device memory
// Each thread writes one element

SetElement(Csub, row, col, Cwvalue),;

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

(emphasis added).)

work, and reserve space buffer sizes in the GPU memory.” “The work-space buffer is used for
temporary storage” and the “ content can be discarded or modified after all GPU kernels launched
by the corresponding API complete.” The “reserve-space buffer” used to transfer intermediate

results is used for transferring “intermediate results” as used in the cuDNN GPU-acceleration

In addition, exemplary CUDA function “cudaMalloc” is used to “allocate weight,

library for CUDA.
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1.2.15. cudnnGetMul tiHeadAttnBuffers()
This function co"np.J:es*.'.'eight work, and reserve space buffer sizes used by the fol |D"a‘-"'1l.:] functions:

(B (a1 (]

cudnnStatus_t cudnnGetMultiHeadAttnBuffers(
cudnnHandle_t handle,
const cudnnAttnDescriptor_t attnDesc,
size t *weightSizeInBytes,

ze t *workSpaceSizeInBytes,

Ze

i
ize t *reserveSpaceSizelInBytes);

oA

Assigning NULL to the reserveSpaceSizeInBytes argument indicates that the user does not plan to invoke multi-head attention
gradient functions: cudnnMultiHeadAttnBackwardData() and cudnnMultiHeadAttnBackwardWeights() . This situation cccurs in the
inference mode.

Note:MULL cannot be assigned to weightSizeInBytes and workSpaceSizeInBytes pointers.

The user must allocate weight, work, and reserve space buffer sizes in the GPU memory using cudaMalloc() with the reporited
buffer sizes. The buffers can be also carved out from a larger chunk of allocated memory but the buffer addresses must be at least
16B aligned.

The work-space buffer is used for temporary storage. Its content can be discarded or modified after all GPU kernels launched by the
”orreapmdlng APl comole‘te The reserve-space buffer is used to transfer intermediate results from cudnnMultiHeadAttnForward()
ardData( ) , and from cudnnMultiHeadAttnBackwardData(} to

udnnMu d t=() . The content of the reserve-space buffer cannot be modified until all GPU kernels
launched by the above hree multi-head attentlon API functions finish.

All multi-head attention weight and bias tenscrs are stored in a single weight buffer. For speed optimizations, the cuDNN APl may
change tensor layouts and their relative locations in the weight buffer based on the provided attention parameters. Use the
cudnnGetMul tiHeadAttnWeights () function to obtain the start address and the shape of each weight or bias tensor.

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-
893/api/index.html#cudnnGetMultiHead AttnBuffers (emphasis added).)

74.  The Accused Products practice a method that includes swapping the first pointer
with the second pointer at the end of the first computational cycle, such that the first output data
becomes an input for a second computational cycle of the numerical simulation. For example, the
CuDNN GPU-acceleration library of the Accused Products implement operations that “take tensors

as input and produce tensors as output.”

2.2. Tensors and Layouts

Whether using the graph API or the legacy API, cuDMNN operations take tensors as input and produce tensors as output.

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-881/developer-
guide/index.html#tensors-layouts (emphasis added).)

75. Nvidia confirms that CUDA implements pointer swapping for device (GPU) pointers.
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Swap device Pointers

Home > B Accelerated Computing B CUDA B CUDA Programming and Performance

SamWhite Aug 01'15

Hi guys )

I'm really sorry for the very basic question but | cannot find a straight answer on any of the online resources | have
checked.

| am writing some code in cuda that ‘ping pongs’ on two sets of data, reading from one and writing to the other.

What I need to know is does the following piece of code actually work on DEVICE pointers in cuda. This is memory

that has already been allocated on the device. | call the below in a method at the start of each frame.
cData* temp = d_data;
d_data= d_data0ld;

d_data0ld= temp;

If not can you suggest alternatives to simply changing which pointers | send to the kernels - | prefer to avoid that
method in order to keep the code easy to read!

Thanks :)

* k * k%

3.7k views

Robert_Crovella © Moderator Aug 01°'15

@ It works. A pointer in C is just a number.

NVIDIA A DEVICE pointer in cuda is just a C pointer, after all. There's no magic here.

(See https://forums.developer.nvidia.com/t/swap-device-pointers/38964 (emphasis added).)
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Applications manage the concurrent operations described above through streams. A stream is a sequence of
commands (possibly issued by different host threads) that execute in order. Different streams, on the other hand, may
execute their commands out of order with respect to one another or concurrently; this behavior is not guaranteed and
should therefore not be relied upon for correctness (for example, inter-kernel communication is undefined). The
commands issued on a stream may execute when all the dependencies of the command are met. The dependencies
could be previously launched commands on same stream or dependencies from other streams. The successful
completion of synchronize call guarantees that all the commands launched are completed.

3.2.8.5.1. Creation and Destruction of Streams

A stream is defined by creating a stream object and specifying it as the stream parameter to a sequence of kernel
launches and host  «-» device memory copies. The following code sample creates two streams and allocates an array
satitr Of floet in page-locked memory.

cudaitream_t stream[2];

for (int 1 = B; 1 = 2; ++1)
cudaStresmCreate{&stream(1]) ;

float* hostPtr;

cudeMallocHost(LhastPtr, 2 * size)

Each of these streams is defined by the following code sample as a seqguence of one memory copy from host to
device, one kernel launch, and one memory copy from device to host:

far (int 1 = B; 1 = 2; #++1) {
cudaMemepylsync(inputDevPtr + 1 * zize, hostPtr + 1 * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel ==<188, 512, 8, stream|[i]===
{outputDevPtr + 1 * eize, inputDewPtr + 1 * zize, siza);
cudaMemcpyhsync (hostPtr + 1 * size, outputDevPtr + 1 * size
size, cudaMemcpyleviceToHost, stream[1]);

Each stream copies its portion of input array  hostetr Lo array  ingutbevptr N deviCE MEMOry, Processes  inputDevitr
on the device by calling wyxerne1() , and copies the result | cutputpevesr  back to the same portion of | hostper
Overlapping Behavior & describes how the streams overlap in this example depending on the capability of the device.
Mote that noztper must point to page-locked host memory for any overlap to occur.

Streams are released by calling | cudestreamozstroy
(See https://docs.nvidia.com/cuda/cuda-c-programming-guide/#creation-and-destruction-of-
streams (emphasis added).)
76. Each claim in the *867 Patent recites an independent invention. Neither claim 16,
described above, nor any other individual claim is representative of all claims in the 867 Patent.
77. Defendant has been aware of the technology patented by the *867 Patent since at

least 2007, when the inventors of the Asserted Patents first discussed their patented technologies
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with Mr. Sanford Russell, then the CTO of Nvidia. At the time, the inventors asked Defendant to

collaborate with them on training neural networks using Nvidia’s GPUs. Defendant informed the

inventors, through Mr. Russell, that it was not interested in the collaboration. Defendant has also

cited the application for the 867 Patent in its own patent portfolio since at least June 28, 2010.

Nvidia Corporation

Title

System, method, and computer program product for
performing operations on data utilizing a computation
module

* * *k k%

Cited By (42)
Publication number Priority date Publication date Assignee
US20130163195A1 * 2011-12-22 2013-06-27
US8922566B2 * 2010-06-28 2014-12-30

(See

https://patents.google.com/patent/US8648867B2/en?0q=8648867#citedBy

added).)

a2 United States Patent

Nvidia Corporation

Rechargeable universal serial bus external graphics
device and method

(emphasis

(107 Patent No.: US 8,922,566 B2

Soma 45y Date of Patent: Dec. 30, 2014
(54) RECHARGEABLE UNIVERSAL SERIAL BUS 20090141894 AL® 62009 Sahdra el al w 3BV 23S
NTERNAL GRAP % DEVICE AN 0090144456 ALY &/ 2008 Gelfetal. o THVE
t;:lllé:'l:“;[ GRAPHICS DEVICE AND 01000091025 Al* 42010 Nugent et al . 357502
OTHER PUBLICATIONS
(751 Inventor;  Srimivas Soma, Hyderabad (TN
Reimer, Coming Soon: An External Video Card Near You?, ARS
(73} Assignee: NVIDIA Corporation, Santa Clara, CA Technica {hitp:arstechnica . com/uncategon zed 2006/ 06 T400/ )
' E] (Aug. 2, 2006).*
White, NYIDIA Announces Quadro Plex, Monster Graphics for
s T A b e . qs Pros,  hrtpedgizmode.com’ 19 1R avidia-announces-gquado-ple-
{ ®) Nolice: f&uh:]um[l l.n ..d.n}. -;.lu::;.,lglluk r..'lli-I.L‘[LJ'I[I u‘l this monster-graphics-for-pros, Gawker Media (Aug, 1, 2006).*
patent is extended or adjusted under 35 NVIDIA Quadro Plex 1000 Installation Guide. DI-02500-001_ V03,
LS.C. 154(h) by 548 days. NVIDIA Corporation {2007).*
(21} Appl. Moo 12/824,423 * gited by examiner
{22} Filed: Jun. 28, 2010 Primary Evaminer — lames A Thompson

(T4 Aftearmen: Filla.Kntah P

Aerort e Fiene

* *x Kk k* %
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(56) References Cited
LS, PATENT DOCTUMENTS

2040438 A * 91990 Cymaneal, s, 345502
507,17 B2® 12003 SHhermin .ooocvevveverennnne. S000 1344
JODTIORD Al*  SB2000 Smuth ..o . ZRG125

JOORDIL722 AL®* 52008 Gorchetchmkov et al. ... 345503

(See https://patentimages.storage.googleapis.com/ee/13/e9/61df149c3fddc7/US8922566.pdf

(Nvidia U.S. Patent No. 8,922,566) (emphasis added).)

ApplcasoniControl Mo, Applicant{syFPatent LUinder
13588 B84 Haaxarmination
bl PELLETIER. SEAN MICHAEL
Notice of References Cited
Enmmine A Lt
F i 2
FALL A MYERS 21 e Eola
UE. PATENT DOCUMENTS
" Dacument Numbes BT
sty Cothe-So mites-slind Cota Rkl P i Clagsification
* 4 | US-8,6125652 B2 122013 Teued et al. F10/482
* | & | US-8.648.867 B2 02-2014 Gorehalehniioy o a 345601
* | ¢ | us-a8e8s7.007 B2 04-2014 Mugent at al. 348502
Yoo | uses7a0.247 B2 05-2014 Hire: &1 al, 345/603
(See

https://patentcenter.uspto.gov/applications/13335850/displayReferences/referenceForms?applicat
ion= (Nvidia U.S. Appl. No. 13/335,850 August 12, 2014, List of References Cited by Examiner)
(emphasis added).)

78.  Starting in or around 2016, the inventors of the Asserted Patents held multiple
discussions with Nvidia to invest in or purchase their Al company, Neurala, Inc., and all its assets,
including the 867 Patent and its related patents and applications. These discussions included at
least Mr. Alvin Lin, an Nvidia Senior Director of Business Development, and Mr. Jeff Herbst, then
an Nvidia Vice President of Business Development and head of Nvidia’s Inception GPU Ventures,

in or around September 6, 2016. In or around October 2016, Nvidia, through its representatives,
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initiated discussions with the inventors to invest in Neurala, Inc. for approximately $10 million.
79. The inventors also discussed their patented technology, in addition to the 867
Patent and its family, with Defendant’s representatives at Nvidia’s artificial intelligence
conference in or around June 2017. On or about June 26, 2017, Defendant received materials from
the inventors, in lieu of a meeting on or about June 29, that identified the *867 Patent and its family
and described the technology in detail. Defendant had previously stated it was interested in the
inventors’ solutions. Defendant also featured the inventors on its website as members of

Defendant’s start-up incubator on or about September 25, 2019.

Computer Vision / Video Analytics

Inception Spotlight: Al Startup Neurala Sees
7X Speedup with NGC

Sep 25,2019 1 0 Like Discuss (0)

By Nefi Alarcon

* kX k%

To help businesses develop custom computer vision solutions quickly, Neurala, a

member of NVIDIA’s start-up incubator Inception, has developed Brain Builder, a

cloud platform that provides data scientists and developers that are new to deep

learning with the ability to quickly and easily train neural networks.

(See https://developer.nvidia.com/blog/inception-spotlight-ai-startup-neurala-sees-7x-speedup-
with-ngc/ (September 25, 2019); see also https://www.youtube.com/watch?v=-WBtxGL0oQNs
(“Neurala Accelerating Al Video Annotation with NGC Containers” posted by Defendant’s
YouTube account).)

80. Defendant directly infringes at least claim 16 of the 867 Patent, either literally or

under the doctrine of equivalents, by performing the steps described above. For example,
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Defendant performs the claimed method in an infringing manner as described above by
implementing the Accused Products as part of its accelerated computing operations and running
corresponding software that implements the infringing performance. Defendant also performs the
claimed method in an infringing manner when testing the operation of the Accused Products and
corresponding systems. As another example, Defendant performs the claimed method when
providing or administering services to third parties, customers, and partners using the Accused
Products.

81.  Defendant’s partners, customers, and users of its Accused Products and
corresponding systems and services directly infringe at least claim 16 of the 867 Patent, literally
or under the doctrine of equivalents, at least by using the Accused Products and corresponding
systems and services, as described above.

82. Defendant has actively induced and is actively inducing infringement of at least
claim 16 of the *867 Patent with specific intent to induce infringement, and/or willful blindness to
the possibility that its acts induce infringement, in violation of 35 U.S.C. § 271(b). For example,
Defendant encourages and induces customers to use Nvidia’s CUDA platform in a manner that
infringes claim 16 of the *867 Patent at least by offering and providing software that performs a
method that infringes claim 16 when installed and operated by the customer using the Accused
Products, and by engaging in activities relating to selling, marketing, advertising, promotion,
installation, support, and distribution of the Accused Products.

83. Defendant encourages, instructs, directs, and/or requires third parties—including
its certified partners and/or customers—to perform the claimed method using the software,
platform, services, and systems in infringing ways, as described above.

84. Defendant further encourages and induces its customers to infringe claim 16 of the
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’867 Patent: 1) by making its accelerated computing and data center services available on its
website, providing applications that allow users to access those services, widely advertising those
services, and providing technical support and instructions to users (see
https://www.nvidia.com/en-us/data-center/data-center-gpus/gpu-test-drive/); and 2) through
activities relating to marketing, advertising, promotion, installation, support, and distribution of
the Accused Products, including its CUDA platform, and services in the United States. (See
https://www.nvidia.com/en-us/; see https://www.nvidia.com/en-us/about-nvidia/partners/;
https://www.nvidia.com/en-us/data-center/where-to-buy/;  https://www.nvidia.com/en-us/data-
center/where-to-buy-tesla/.)

85. For example, Defendant shares instructions, guides, and manuals, which advertise
and instruct third parties on how to use its hardware and platform as described above, including at
least customers and partners. (See https://docs.nvidia.com/cuda/cuda-c-programming-guide/.)
Defendant also provides customer service and technical support to purchasers of the Accused
Products and corresponding systems and services, which directs and encourages customers to
perform certain actions that use the Accused Products in an infringing manner. (See
https://www.nvidia.com/en-us/support/; https://www.nvidia.com/en-
us/support/enterprise/services/.)

86. Defendant and/or Defendant’s partners recommend and sell the Accused Products
and provide technical support for the installation, implementation, integration, and ongoing
operation of the Accused Products for each individual customer. On information and belief, each
customer enters into a contractual relationship with Defendant and/or one of Defendant’s partners,
which obligates each customer to perform certain actions in order to use the Accused Products.

(See https://www.nvidia.com/en-us/agreements/; https://www.nvidia.com/en-
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us/agreements/cloud-services/nvidia-cloud-agreement/; https://www.nvidia.com/en-
us/agreements/cloud-services/service-specific-terms-for-nvidia-dgx-cloud/.) Further, in order to
receive the benefit of Defendant’s and/or its partner’s continued technical support and their
specialized knowledge and guidance of the operability of the Accused Products, each customer
must continue to use the Accused Products in a way that infringes the 867 Patent. (See
https://www.nvidia.com/en-us/support/.)

87. Further, as the entity that provides installation, implementation, and integration of
the Accused Products in addition to ensuring the Accused Product remains operational for each
customer through ongoing technical support, on information and belief, Defendant and/or
Defendant’s partners affirmatively aid and abet each customer’s use of the Accused Products in a
manner that performs the claimed method of, and infringes, the *867 Patent.

88. Defendant also contributes to the infringement of its partners, customers, and users
of the Accused Products by providing within the United States or importing into the United States
the Accused Products, which are for use in practicing, and under normal operation practice, the
methods, systems, and devices claimed in the Asserted Patents, constituting a material part of the
inventions claimed, and not a staple article or commodity of commerce suitable for substantial
non-infringing uses. Indeed, as shown above, the Accused Products and the example functionality
have no substantial non-infringing uses but are specifically designed to practice the *867 Patent.

89.  Oninformation and belief, the infringing actions of each partner, customer, and/or
user of the Accused Products are attributable to Defendant. For example, on information and belief,
Defendant directs and controls the activities or actions of its partners or others in connection with
the Accused Products by contractual agreement or otherwise requiring partners or others to provide

information and instructions to customers who acquire the Accused Products which, when
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followed, results in infringement. Defendant further directs and controls the operation of devices
executing the Accused Products by programming the software which, when executed by a
customer or user, performs the claimed method of at least claim 16 of the 867 Patent.

90. Plaintiff has suffered and continue to suffer damages as a result of Defendant’s
infringement of the *867 Patent. Defendant is therefore liable to Plaintiff under 35 U.S.C. § 284
for damages in an amount that adequately compensates Plaintiff for Defendant’s infringement, but
no less than a reasonable royalty.

91. Defendant’s infringement of the 867 Patent is knowing and willful. Defendant had
actual knowledge of the 867 Patent application since at least 2010 and actual knowledge of the
’867 Patent, and its family, since at least 2017.

92. On information and belief, despite Defendant’s knowledge of the Asserted Patents
and Plaintiff’s patented technology, Defendant made the deliberate decision to sell products and
services that it knew infringe these patents. Defendant’s continued infringement of the *867 Patent
with knowledge of the *867 Patent constitutes willful infringement.

SECOND CAUSE OF ACTION
(INFRINGEMENT OF THE °438 PATENT)

93.  Plaintiff realleges and incorporates by reference the allegations of the preceding

paragraphs of this Complaint.

94, Defendant has infringed and continues to infringe one or more claims of the *438 Patent

in violation of 35 U.S.C. § 271 in this District and elsewhere in the United States and will continue to

do so. The Accused Products, including features of, e.g., the Grace Hopper Superchip (GH200), at least

when used for their ordinary and customary purposes, practice each element of at least claim 21 of the

’438 Patent as demonstrated below.

95.  For example, claim 21 of the *438 Patent recites:

40



Case 7:24-cv-00221 Document 1 Filed 09/13/24 Page 41 of 93

21. A method of performing a sequence of computations
representing an artificial neural network, the method comprising:

receiving, at a central processing unit (CPU), first input data
acquired from an external system in real time;

initializing, by a controller operably coupled to a graphics
processing unit (GPU), textures and shaders in a memory operably
coupled to the GPU;

transferring the first input data received by the CPU to the memory
operably coupled to the GPU,;

performing, by the graphics processing unit (GPU), a first
computation in the sequence of computations on the first input data
based on the textures and shaders to generate first output data,
computations in the sequence of computations representing
respective layers of neurons in the artificial neural network, an
output of the first computation in the sequence of computations
representing an output of a first neuron in a first layer in the artificial
neural network;

storing, in the memory operably coupled to the GPU, the first input
data and the first output data; and

transferring second input data acquired from the external system in
real time into the memory operably coupled to the GPU after the
GPU starts the first computation and before the GPU starts a second
computation of the sequence of computations, an output of the
second computation in the sequence of computations representing
an output of a second neuron in a second layer in the artificial neural
network.

96.  The Accused Products perform each step of the method of claim 21 of the *438
Patent. To the extent the preamble is construed to be limiting, the Accused Products perform a
method of performing a sequence of computations representing an artificial neural network, as
further explained below. For instance, the Grace Hopper Superchip (GH200) “brings together the
groundbreaking performance of the NVIDIA Hopper GPU with the versatility of the NVIDIA
Grace™ CPU . . . in a single Superchip.” It includes the cuDNN (CUDA Deep Neural Network)

library for “[d]eep neural networks.”
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Inside NVIDIA’s First GPU-CPU Superchip

The NVIDIA® GH200 Grace Hopper architecture brings together the groundbreaking
performance of the NVIDIA Hopper GPU with the versatility of the NVIDIA Grace™ CPU,
connected with a high bandwidth and memory coherent NVIDIA NVLink Chip-2-Chip
(C2C)° interconnect in a single Superchip, and support for the new NVIDIA NVLink
Switch System.

* k * kX

An extensive suite of domain-specific libraries and frameworks further accelerates main
algorithms in a wide range of application domains, for example:

Deep neural networks (cuDNN])

Linear solvers for simulations and implicit unstructured methods (AmgiX)
Quantum computing (cuQuantum)

Data science

Machine learning (RAPIDS)

Data loading and preprocessing for machine learning (DALI)

Real-time 3D simulation and design collaboration (Omniverse)

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)
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97.  The “Grace Hopper Superchip is the first true heterogeneous accelerated platform
for high-performance computing (HPC) and Al workloads. It accelerates applications with the
strengths of both GPUs and CPUs while providing the simplest and most productive heterogeneous

programming model to date.”

The NVIDIA GH200 Grace Hopper Superchip is the first true heterogensous accelerated
platform for high-performance computing (HPC) and Al workloads. It accelerates
applications with the strengths of both GPUs and CPUs while providing the simplest and
most productive heterogeneous programming model to date, enabling scientists and
engineers to focus on solving the world's most important problems. Together with
NVIDIA networking technologies, NVIDIA GH200 provides the recipe for the next
generation of HPC supercomputers and Al factories, enabling customers to take on
larger datasets, more complex models, and new workloads, solving them more quickly
than before.

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

98. In addition, the Accused Products, including the Grace Hopper Superchip,
implement CUDA, Nvidia’s proprietary “parallel computing platform and programming model.”
CUDA further includes the CUDA Toolkit, which “includes GPU-accelerated libraries, a
compiler, development tools and the CUDA runtime.” As an example, the “CUDA® Deep Neural
Network library (cuDNN) is a GPU-acceleration library of primitives for deep neural networks.”

It “provides highly tuned implementations for standard routines” for GPU-based acceleration.

CUDA Zone

CUDA® is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing
units (GPUs). With CUDA, developers are able to dramatically speed up computing applications by harnessing the power of GPUs.

In GPU-accelerated applications, the sequential part of the workload runs on the CPU - which is optimized for single-threaded
performance - while the compute intensive portion of the application runs on thousands of GPU cores in parallel. When using CUDA,
developers program in popular languages such as C, C++, Fortran, Python and MATLAB and express parallelism through extensions in

the form of a few basic keywords.

The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-accelerated applications. The CUDA Toolkit includes GPU-
accelerated libraries, a compiler, development tools and the CUDA runtime.

(See https://developer.nvidia.com/cuda-zone (emphasis added).)
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NVIDIA cuDNN

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of

primitives for deep neural networks. cuDNN provides highly tuned implementations for

standard routines such as forward and backward convolution, attention, matmul, pooling,

and normalization.

(See https://developer.nvidia.com/cudnn (emphasis added).)
99. Nvidia GPU architectures that implement CUDA and cuDNN include the Hopper
(e.g., Grace Hopper Superchip (GH200), H100), Ada Lovelace, Ampere, Turing, Volta, Pascal,

and Maxwell GPU architectures of the Accused Products.

|1_GPU, CUDA Toolkit, and CUDA Driver Requirements |

The Tollowing sections highlight the compatibility of NVIDIA® cUDNN versions with the various supported NVIDIA CUDA® Toolkit, CUDA driver, and
NVIDIA hardware versions.

Table 1. GPU, CUDA Toolkit, and CUDA Driver Requirements

CUDNN Package! | CUDA Toolkit Supports static NVIDIA Driver Version CUDA Compute Supported NVIDIA
Versio - 2 hility
Version linking?~ Linux Windows Capability Hardware
CcuDNM B.9.6 for 122 Yes ==52560.13 ==52741 9.03
CUDA 12x - .
121 Mo gt NVIDIA Hopper™=
120 86 NVIDIA Ada
cuDNN B.9.6 for 118 Yes == 450.80.02 ==452 39 ’ Lovelace
CUDA 11x . o 80 architecture®
116 75 N‘JIE?IA Ampere
architecture
15 70
MNVIDIA Turing™
114 6.1
NVIDIA Volta™
113 50
MVIDIA Pascal™
1127 50 .
MNVIDIA Maxwe
1.1
11.0°

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-896/support-matrix/index.html
(emphasis added).)

100. The Accused Products perform a method that includes receiving, at a central
processing unit (CPU), first input data acquired from an external system in real time. For instance,

as illustrated below, a diagram describing the architecture of the Grace Hopper Superchip depicts
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a CPU (“Grace CPU”) with “[u]p to 72 cores” that receives and sends input and output data via
“High-Speed 10” (“PCle-5"). The Grace CPU is further depicted as being coupled to memory

“CPU LPDDR5X” up to 480GB via a link up to “500 GB/s.”

Figure 1 shows the logical overview of the NVIDIA GH200 Grace Hopper Superchip and
Table 1 lists its key features.

NVIDIA GH200 Grace Hopper Superchip

18x NVLink 4
S00GB/s

High-Speed
NVLink Network
< 32 GPUs

-
P
-
-
-
-
<
<4
-
-
pe
R
-
-t
e

Figure 1. NVIDIA GH200 Grace Hopper Superchip Logical Overview

Table 1. NVIDIA GH200 Grace Hopper Superchip Key Features
Festwe  |Deseripon
Grace CPU cores (number) Up to 72 cores
CPU LPDDRSX bandwidth (GB/s) Up to 500GB/s
GPU HEBM bandwidth (GB/s) ATB/s HEM3
4 9TB/s HEM3e
MNVLink-C2C bandwidth (GB/s) 900GB/s total, 450GB/s per direction
CPU LPDDRSX capacity (GB) Up to 480GB
GPU HBM capacity (GB) 96GE HEM3
1440G8B HEM3e
PCle Gen 5 Lanes Gdx

* k kK K
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NWLink-C2C enables applications to oversubscribe the GPU's memory and directly utilize
NVIDIA Grace CPU's memory at high bandwidth. With up to 480GE of LPDDR5X CFU
memory per Grace Hopper Superchip, the GPU has direct high-bandwidth access to an
additional 480GB of memory. Combined with NVIDIA NVLink Switch System, all GPU
threads running on up to 32 NVLink-connected GPUs on NVIDIA GHZ200 NVL32 can now
access up to 19.5TB of memory at high bandwidth. Fourth generation NVLink allows

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

101. In a related diagram example, “CPU PHYSICAL MEMORY” (LPDDR5X) is

illustrated as being accessed by a CPU (“CPU-resident access™).

In NVIDIA Grace Hopper Superchip-based systems, Address Translation Service (ATS)
enables the CPU and GPU to share a single per-process page table, enabling all CPU and
GPU threads to access all system-allocated memory (Figure 8), which can reside on
physical CPU or GPU memory. The CPU heap, CPU thread stack, global variables,

memory-mapped files, and inter-process memory are accessible to all CPU and GPU
threads.

LPDDR5X

HOPPER

GPU

NVLINK C2C

cry \/\ GPU
PHYSICAL | e CPU-resident _~Remote ™ GPU-resident PHYSICAL
MEMORY

MEMORY | o access // accesses \ access
5 : : ]

|
|

System Page Table
Translates CPU malloc() to CPU or GPU

Figure 8. ATS in an NVIDIA Grace Hopper Superchip System

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)
102.  As previously stated, the Accused Products implement CUDA and specialized

GPU-acceleration libraries such as cuDNN. “CUDA® is a parallel computing platform and
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programming model developed by NVIDIA for general computing on graphical processing units
(GPUs)” including “GPU-accelerated applications.” In GPU-accelerated applications, “the
sequential part of the workload runs on the CPU — which is optimized for single-threaded
performance — while the compute intensive portion of the application runs on thousands of GPU

cores in parallel.”

CUDA Zone

CUDA® is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing
units (GPUs). With CUDA, developers are able to dramatically speed up computing applications by harnessing the power of GPUs.

In GPU-accelerated applications, the sequential part of the workload runs on the CPU - which is optimized for single-threaded
performance - while the compute intensive portion of the application runs on thousands of GPU cores in parallel. When using CUDA,
developers program in popular languages such as C, C++, Fortran, Python and MATLAB and express parallelism through extensions in

the form of a few basic keywords.

The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-accelerated applications. The CUDA Toolkit includes GPU-
accelerated libraries, a compiler, development tools and the CUDA runtime.

(See https://developer.nvidia. com/cuda-zone (emphasis added).)

103. The “CUDA programming model” implements programming functions and
instructions for CPUs and GPUs. “The host is the CPU available in the system” and “system
memory associated with the CPU is called host memory.” As an example, the first main CUDA

program execution step is “[c]opy[ing] the input data from host [CPU] memory.”

Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU

is called host memory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

= Copy the input data from host memory to device memory, also known as host-to-device

transfer.
+ Load the GPU program and execute, caching data on-chip for performance.

= Copy the results from device memory to host memory, also called device-to-host transfer.
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(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added).)

104. The Accused Products perform a method that includes initializing, by a controller
operably coupled to a graphics processing unit (GPU), textures and shaders in a memory operably
coupled to the GPU. For instance, as illustrated below, a GPU (“Hopper GPU”) for the Grace
Hopper Superchip is depicted as accessing both CPU and GPU memory using “NVLINK” for both
accessing and storing data. Indeed, “NVIDIA GH200 is designed to accelerate applications with
exceptionally large memory footprints.” As illustrated, the Hopper GPUs are illustrated coupled

to “GPU HBM3” high bandwidth memory or “GPU HBM3e” high bandwidth memory.

Local CPU < GPU

CPU LPDDR SX CPU LPOORSK

GPU = Peer CPU

Figure 5. Memory Accesses across NVLink-connected Grace Hopper
Superchips

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

105. The GPU architecture of the Accused Products implements a controller. As an
example, the Hopper-GPU architecture includes “GPU processing clusters” and “texture
processing clusters” and implements “HBM3 memory controllers” including “12 512-bit memory
controllers” coupled GPU memory including “6 HBM3 or HBM2e stacks,” “80 GB HBM3, 5

HBM3 stacks,” and “80 GB HBM2e, 5 HBM2¢ stacks.”

The NVIDIA GH100 GPU is composed of multiple GPU processing clusters (GPCs), texture

processing clusters (TPCs), streaming multiprocessors (SMs), L2 cache, and HBM3

memory controllers.
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The full implementation of the GH100 GPU includes the following units:

» 8GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU
128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU
4 fourth-generation Tensor Cores per SM, 576 per full GPU

6 HBM3 or HBMZ2e stacks, 12 512-bit memory controllers

60 MB L2 cache

Fourth-generation NVLink and PCle Gen 5

The NVIDIA H100 GPU with SXM5 board form-factor includes the following units:

» 8GPCs, 66 TPCs, 2 SMs/TPC, 132 SMs per GPU

« 128 FP32 CUDA Cores per SM, 16896 FP32 CUDA Cores per GPU
« 4 fourth-generation Tensor Cores per SM, 528 per GPU

+ 80 GB HBM3, 5 HBM3 stacks, 10 512-bit memory controllers

« 50MB L2 cache

+ Fourth-generation NVLink and PCle Gen 5

The NVIDIA H100 GPU with a PCle Gen 5 board form-factor includes the following units:

e 7 or 8 GPCs, 57 TPCs, 2 SMs/TPC, 114 SMs per GPU

» 128 FP32 CUDA Cores/SM, 14592 FP32 CUDA Cores per GPU

» 4 fourth-generation Tensor Cores per SM, 456 per GPU

» 80 GB HBMZe, 5 HBMZ2e stacks, 10 512-bit memory controllers
e 50MB L2 cache

« Fourth-generation NVLink and PCle Gen 5

(See https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ (emphasis added).)
106. In addition, CUDA includes the exemplary NPP (Nvidia Performance Primitives)
library “for performing CUDA accelerated processing” and “performing CUDA accelerated

processing for 2D image and signal processing.”
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CUDA Toolkit Documentation 12.6

Develop, Optimize and Deploy GPU-Accelerated Apps

The NVIDIA® CUDA® Toolkit provides a development environment for creating high performance GPU-
accelerated applications. With the CUDA Toolkit, you can develop, optimize, and deploy your applications on
GPU-accelerated embedded systemns, desktop workstations, enterprise data centers, cloud-based platforms
and HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools,

a C/C++ compiler, and a runtime library to deploy your application.

Rk

NPP

NVIDIA NPP is a library of functions for performing CUDA accelerated processing. The initial
set of functionality in the library focuses on imaging and video processing and is widely
applicable for developers in these areas. NPP will evolve over time to encompass more of

the compute heavy tasks in a variety of problem domains. The MPP library is written to

maximize flexibility, while maintaining high performance.

(See https://docs.nvidia.com/cuda/index.html (emphasis added).)

What is NPP 7

MWIDIA MPP is a library of functions for performing CUDA accelerated 20 image and signal

processing.

The primary set of functionality in the library focuses on image processing and is widely
applicable for developers in these areas. NPP will evolve over time to encompass more of the
compute heavy tasks in a variety of problem domains. The NPF library is written to maximize

flexibility, while maintaining high performance.

(See https://docs.nvidia.com/cuda/npp/introduction.html (emphasis added).)

107.  As an example, the exemplary CUDA NPP library passes image data using “[a]
pointer to the image’s underlying data type” and “[a] line step in bytes.” In this example, the
pointer is passed “to the underlying pixel data type” and the pointer and line step are passed

individually for processing involving “image data.”
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Image Data
Image data is passed to and from NPPI primitives via a pair of parameters:

1. A pointer to the image’s underlying data type.

2. A line step in bytes (also sometimes called line stride).

The general idea behind this fairly low-level way of passing image data is ease-of-adoption into existing

software projects:
» Passing a raw pointer to the underlying pixel data type, rather than structured (by color) channel pixel

data allows usage of the function in a wide variety of situations aveiding risky type cast or expensive

image data copies.

» Passing the data pointer and line step individually rather than a higher-level image struct again allows for

easy adoption by not requiring a specific image representation and thus avoiding awkward packing and
unpacking of image data from the host application to an NPP specific image representation.

(See
https://docs.nvidia.com/cuda/npp/introduction.html#nppi_conventions_Ib_1passing_image_data
(emphasis added).)

108.  As another example, the exemplary CUDA NPP library implements function for
image color conversion. These functions “manipulat[e] an image’s color model and sampling
format” and “can be found in the nppicc [NVIDIA Performance Primitives Image Color
Conversion] library.” As shown, these functions save “application load time” and “CUDA

runtime.”

Image Color Conversion Functions

Routines manipulating an image’s color model and sampling format.

These functions can be found in the nppicc library. Linking to only the sub-libraries that you use can

significantly save link time, application load time, and CUDA runtime startup time when using dynamic

libraries.

(See https://docs.nvidia.com/cuda/npp/image_color_conversion.html#image-color-model-
conversion-functions (emphasis added).)

109. The Accused Products perform a method that includes transferring the first input
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data received by the CPU to the memory operably coupled to the GPU. For instance, the “CUDA
programming model” implements programming functions and instructions for CPUs and GPUs.
“The host is the CPU available in the system” and “system memory associated with the CPU is
called host memory.” “The GPU is called a device and GPU memory likewise called device
memory.” As an example, the first main CUDA program execution step is “[c]opy[ing] the input

data from host [CPU] memory to device [GPU] memory, also known as host-to-device transfer.”

Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU

is called host memaory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device

transfer.
« Load the GPU program and execute, caching data on-chip for performance.
« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added).)

110. The Accused Products perform a method that includes performing, by the graphics
processing unit (GPU), a first computation in the sequence of computations on the first input data
based on the textures and shaders to generate first output data, computations in the sequence of
computations representing respective layers of neurons in the artificial neural network, an output
of the first computation in the sequence of computations representing an output of a first neuron
in a first layer in the artificial neural network. For instance, the CUDA platform programming
implemented in the Accused Products utilizes the GPU and GPU memory. As an example, after

the “host-to-device transfer” (host (CPU) memory to device (GPU) memory), the second main
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step is “[1]oad the GPU program and execute, caching data on-chip for performance.”

Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU
is called host memaory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device
transfer.

« Load the GPU program and execute, caching data on-chip for performance.

« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added).)

111. In addition, as previously stated, cuDNN is a CUDA “GPU-acceleration library of
primitives for deep neural networks.” (See https://developer.nvidia.com/cudnn.) The exemplary
CuDNN release notes below demonstrate computations implemented for RNNs and related data
being transferred to GPU memory. As shown, users do “not need to transfer [an] array [from RNN

data descriptors] to device memory; the operation will be performed automatically by RNN APIs.”

cuDNN Release Notes

NVIDIA CUDA Deep Meural Network [cuDNN) is a GPU-accelerated library of primitives for deep neural
networks. It provides highly tuned implementations of routines arising frequently in DNN applications.
These release notes describe the key features, software enhancements and improvements, and
known issues for the NVIDIA cuDNN 8.9.3 and earlier releases.

* *x Kk k* %
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= RMNM and multinead attention API calls may exhibit nondeterministic behavior when the
cuDMNM library is built with CUDA Toolkit 10.2 or higher. This is the result of a new buffer
management and heuristics in the cuBLAS library. As described in Besults Reproducibility,
nurmerical results may not be deterministic when cuBLAS APIs are launched in more than
one CUDA stream using the same cuBLAS handle. This happens when two buffer sizes (16
KB and 4 MB) are used in the default configuration.
When a larger buffer size is not available at runtime, instead of waiting for a buffer of that
size to be released, a smaller buffer may be used with a different GPU kernel. The kernel
selection may affect numerical results. The user can eliminate the nondeterministic
benavior of cuDNN RMNN and multinead attention APIs, by setting a single buffer size in the
CUBLAS WORKSPACE CONFIG enwironmental variable, for example, :16:8 or :4896:2.
The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in GPU
memory while the second setting creates two buffers of 4 MB each. The default buffer
configuration in cuBLAS 102 and 11.0is :16:8:4896: 2, that is, we have two buffer sizes.
In earlier cuBLAS libraries, such as cuBLAS 100, it used the :16:2 non-adjustable
configuration. When buffers of only one size are available, the behavior of cuBLAS calls is
deterministic in multi-stream setups.

* kK X

= cuDNM 8.9.1 added tensor alignment checks to instance norm and layer norm engines to
prevent IMA issues.

= Starting in cuDMNM 8.9.1, the const int32 t devSeglengths[] argument in
cudnnRNMForward() , cudnnRNMNBackwardData vB(), and
cudnnRNMBackwardWeights wa() APIs will be ignored. All three functions will source
variable sequence length arrays from RNN data descriptors, configured through the
seglengthiArray parameter of cudnnSetBNNDataDescriptor() . The user does not need
to transfer this array to device memaory; the operation will be performed automatically by
EMM APls. This refinement simplifies the usage of cuDNN RNN APIs. It is also a workaround
for random crashes in multi-GPU RMNMN training on TensorFlow. Replacing earlier versions of
cuDMNM 8% shared libraries with cuDNN B.9.1 will eliminate those crashes without forcing
the user to switch the TensorFlow version. The cause of intermittent corruptions of
devSeglengths[] . fed to RNN APIs, is still being investigated.

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-893/release-
notes/index.html#abstract (emphasis added).)

112. Relatedly, cuDNN operations below exemplify tensors being used as inputs and
outputs (e.g., Tmp0). Exemplary “cuDNN operations take tensors as input and produce tensors as
output.” As part of CUDA, these cuDNN operations implement computer tasks performed by a

GPU.

2.2. Tensors and Layouts
Whether using the graph API or the legacy API, cuDNN operations take tensors as input and produce tensors as output.
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* *x * k* %

Figure 6. A set of operation descriptors the user passes to the operation graph

Tensor:
uiD = x* Tensor: Tensor: Tensor:
isVirtual = folse uID = Tmp0’ uID = Tmp1* wo =y
isVirtual = true isVirtual = true isVirtual = false
—
Tensor:
uiD ="w’
isVirtual = false
Tensor:
uviD = Tmp0” Tensor:
isVirtual = true uiD = Tmp1’

isVirtual = true

Tensor:
UID = ‘Bias”
isVirtual = folse

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-881/developer-
guide/index.html#tensors-layouts (emphasis added).)

113. The Accused Products perform a method that includes storing, in the memory
operably coupled to the GPU, the first input data and the first output data. For instance, as
illustrated below, a diagram describing the architecture of the Grace Hopper Superchip depicts a
GPU (“Hopper GPU”) in communication with GPU memory (“GPUHBM3 or HBm3e” high

bandwidth memory).
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Figure 1 shows the logical overview of the NVIDIA GH200 Grace Hopper Superchip and
Table 1 lists its key features.

NVIDIA GH200 Grace Hopper Superchip

§

i CPU LPDDRSX
} <480GB
H
!

18x NVLink 4
S00GB/s

High-Speed
NVLink Network
< 32 GPUs

$et4titttttoopases

CPU LPDDRSX
<480G8

Hardware Coherency

D

Figure 1. NVIDIA GH200 Grace Hopper Superchip Logical Overview

Table 1. NVIDIA GH200 Grace Hopper Superchip Key Features
Festwe  |Deseripton
Grace CPU cores (number) Up to 72 cores
CPU LPDDR5X bandwidth (GB/s) Up to S00GB/s
GPU HEM bandwidth (GB/s) ATB/s HEM3
4.9TB/s HBM3e
MNVLink-C2C bandwidth (GB/s) 900GB/s total, 450GB/s per direction
CPU LPDDREX capacity (GB) Up to 480GE
GPU HEM capacity (GB) 96GE HEM3
1440G8B HEM3e
PCle Gen 5 Lanes Gdx

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)
114.  As previously stated, the “CUDA programming model” implements programming
functions and instructions for CPUs (host) and GPUs (device). For example, after the “host-to-

device transfer” (CPU to GPU) first main step and “[1]Joad[ing] the GPU program and execut[ing]”
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and “caching data on-chip for performance” for the second main step, the “results” are stored on

GPU “device memory.”

Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU
is called host memaory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device
transfer.

« Load the GPU program and execute, caching data on-chip for performance.

« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added.)

115. The Accused Products perform a method that includes transferring second input
data acquired from the external system in real time into the memory operably coupled to the GPU
after the GPU starts the first computation and before the GPU starts a second computation of the
sequence of computations, an output of the second computation in the sequence of computations
representing an output of a second neuron in a second layer in the artificial neural network. For
instance, as illustrated below, a diagram describing the architecture of the Grace Hopper Superchip
depicts a CPU (“Grace CPU”) in communication with a GPU (“Hopper GPU”) via “NVLink-C2C”

(chip-to-chip). “High-Speed 10” input and output data is received by the CPU via “PCle-5.”
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Figure 1 shows the logical overview of the NVIDIA GH200 Grace Hopper Superchip and
Table 1 lists its key features.

NVIDIA GH200 Grace Hopper Superchip

CPU LPDDRSX
<480GB

18x NVLink 4
S00GB/s

High-Speed
< 32 GPUs

NVLink Network

Figure 1. NVIDIA GH200 Grace Hopper Superchip Logical Overview

Table 1. NVIDIA GH200 Grace Hopper Superchip Key Features
Festwe  |Deseripton
Grace CPU cores (number) Up to 72 cores
CPU LPDDR5X bandwidth (GB/s) Up to S00GB/s
GPU HEM bandwidth (GB/s) ATB/s HEM3
4.9TB/s HBM3e
MNVLink-C2C bandwidth (GB/s) 900GB/s total, 450GB/s per direction
CPU LPDDRSX capacity (GB) Up to 480GB
GPU HEM capacity (GB) 96GE HEM3
1440G8B HEM3e
PCle Gen 5 Lanes Gdx

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)
116. Furthermore, the Accused Products, including the Grace Hopper Superchip,
implement libraries and SDKs designed for neural networks that “are created from large numbers

of identical neurons [that] are highly parallel by nature.” The Accused Products implement
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CuDNN, a library “makes it easy to obtain state-of-the-art performance with Deep Neural
Networks,” and TensorRT, a platform accelerator and runtime for optimizing, validating, and
deploying neural networks for inference (e.g., applying knowledge from a trained neural network

model and inferring a result).

Accelerating Artificial Neural Networks with GPUs

State-of-the-art Neural Networks can have from millions to well over one hillion parameters to adjust via back-propagation. They also
require a large amount of training data to achieve high accuracy, meaning hundreds of thousands to millions of input samples will
have to be run through both a forward and backward pass. Because neural nets are created from large numbers of identical neurons
they are highly parallel by nature. This parallelism maps naturally to %; which provide a significant computation speed-up over
CPU-only training.

GPUs have become the platform of choice for training large, complex Neural Network-based systems because of their ability to
accelerate the systems. Because of the increasing importance of Neural networks in both industry and academia and the key role of
GPUs, NVIDIA has a library of primitives called cuDNN that makes it easy to obtain state-of-the-art performance with Deep Neural

Networks.

The parallel nature of inference operations also lend themselves well for execution on GPUs. To optimize, validate, and deploy

networks for inference, NVIDIA has an inference platform accelerator and runtime called TensorRT. TensorRT delivers low-latency,

high-throughput inference and tunes the runtime application to run optimally across different families of GPUs.

(See https://developer.nvidia.com/discover/artificial-neural-network (emphasis added).)

117.  An example below illustrates an exemplary neural network the Accused Products
are designed to accelerate using parallel computations. “Input” (four) and “Output” (eight) neurons
are depicted below in a full-connected or linear layer structure in which all of the input neurons
depicted in a first layer are connected to all of the output neurons depicted in a second layer.
Computations for the neural network are performed using, for example, “NVIDIA Matrix
Multiplication.” Examples of inputs and outputs for forward propagation, activation gradient
computation, and weight gradient computation (as matrix by matrix multiplications) are shown
below.

* As arough guideline, choose batch sizes and neurcn counts greater than 128 to

avoid being limited by memory bandwidth (NVIDIA® A100-SXM4-80GB: this
threshold is similar for other A100 and V100 GPUs): see Batch Size.
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2. Fully-Connected Layer

Fully-connected layers, also known as linear layers, connect every input neuron to

every output neuron and are commonly used in neural networks.

Figure 1. Example of a small fully-connected layer with four input and eight output
neurons.

Output
Neurons

Three parameters define a fully-connected layer: batch size, number of inputs, and
number of outputs. Forward propagation, activation gradient computation, and
weight gradient computation are directly expressed as matrix-matrix
multiplications. How the three parameters map to GEMM dimensions (General
Matrix Multiplication, background in the NVIDIA Matrix Multiplication Background
User's Guide) varies among frameworks, but the underlying principles are the
same. For the purposes of the discussion, we adopt the convention used by
PyTorch and Caffe where A contains the weights and B the activations. In

TensorFlow, matrices take the opposite roles, but the performance principles are
the same.
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Table 1. Mapping of inputs, outputs, and batch size to GEMM parameters M, N, K.

Computation

M N K
Phase
Forward Number of Batch size Number of
Propagation outputs inputs
Activation Number of Batch size Number of
Gradient inputs outputs
Weight Gradient Number of Number of Batch size

inputs outputs

* k * k%

Figure 2. Dimensions of equivalent GEMMSs for (a) forward propagation, (b)
activation gradient, and (c) weight gradient computations of a fully-connected

layer.
M=
# of oulpuis
M = hatch size N = batch slze
Gradients K Gradiar
K= ly =
Inpid W af cutputs [Cutpelty baich size ()
Activations
K=
# of inputs
= | i M= Inpus Gradiant
M= it Eo‘l’hi‘npl.l'ls Ticis Gﬂﬂﬁa‘" #ofmputs ||| Activatians {Weightz)
# of culpuls Weights ™ m::,']";nn
(a) (b) (c)
(See https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-

connected/index.html#performance (annotations added).)
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118. Indeed, the cuDNN GPU-acceleration library of the Accused Products implement

operations that “take tensors as input and produce tensors as output.”

Whether using the graph API or the legacy API, cuDNN operations take tensors as input and produce tensors as output.

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-881/developer-
guide/index.html#tensors-layouts (emphasis added).)

119. Each claim in the 438 Patent recites an independent invention. Neither claim 21,
described above, nor any other individual claim is representative of all claims in the 438 Patent.

120. Defendant has been aware of the 438 Patent since at least the filing of this
Complaint. Defendant has been aware of the technology patented by the 438 Patent since at least
2007, when the inventors of the Asserted Patents first discussed their patented technologies with
Mr. Sanford Russell, then the CTO of Nvidia. At the time, the inventors asked Defendant to
collaborate with them on training neural networks using Nvidia’s GPUs. Defendant informed the
inventors, through Mr. Russell, that it was not interested in the collaboration. Defendant has also
cited an ancestor of the *438 Patent in its own patent portfolio since at least June 28, 2010 (See
https://patents.google.com/patent/US8648867B2/en?0q=8648867#citedBY;
https://patentimages.storage.googleapis.com/ee/13/e9/61df149c3fddc7/US8922566.pdf;
https://patentcenter.uspto.gov/applications/13335850/displayReferences/referenceForms?applicat
ion=(Nvidia U.S. Appl. No. 13/335,850 August 12, 2014, List of References Cited by Examiner).)

121. Starting in or around 2016, the inventors of the Asserted Patents held multiple
discussions with Nvidia to invest in or purchase their Al company, Neurala, Inc., and all its assets,
including the ’438 Patent family. These discussions included at least Mr. Alvin Lin, an Nvidia
Senior Director of Business Development, and Mr. Jeff Herbst, then an Nvidia Vice President of

Business Development and head of Nvidia’s Inception GPU Ventures, in or around September 6,
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2016. In or around October 2016, Nvidia, through its representatives, initiated discussions with
the inventors to invest in Neurala, Inc. for approximately $10 million.

122. The inventors also discussed their patented technology, including the underlying
technology and family to the *438 Patent (including U.S. Patent No. 9,189,828, the patent the 438
Patent reissued from), with Defendant’s representatives at Nvidia’s artificial intelligence
conference in or around June 2017. On or about June 26, 2017, Defendant received materials from
the inventors, in lieu of a meeting on or about June 29, that identified patents related to the *438
Patent and described the technology in detail. Defendant had previously stated it was interested in
the inventors’ solutions. Defendant also featured the inventors on its website as members of

Defendant’s start-up incubator on or about September 25, 2019.

Computer Vision / Video Analytics

Inception Spotlight: Al Startup Neurala Sees
7X Speedup with NGC

Sep 25,2019 1 0 Like Discuss (0)

By Nefi Alarcon

E I

To help businesses develop custom computer vision solutions quickly, Neurala, a

member of NVIDIA’s start-up incubator Inception, has developed Brain Builder, a

cloud platform that provides data scientists and developers that are new to deep

learning with the ability to quickly and easily train neural networks.

(See https://developer.nvidia.com/blog/inception-spotlight-ai-startup-neurala-sees-7x-speedup-
with-ngc/ (September 25, 2019); see also https://www.youtube.com/watch?v=-WBtxGL0oQNs
(“Neurala Accelerating Al Video Annotation with NGC Containers” posted by Defendant’s

YouTube account).)
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123. Defendant directly infringes at least claim 21 of the *438 Patent, either literally or
under the doctrine of equivalents, by performing the steps described above. For example,
Defendant performs the claimed method in an infringing manner as described above by
implementing the Accused Products as part of its accelerated computing operations and running
corresponding software that implements the infringing performance. Defendant also performs the
claimed method in an infringing manner when testing the operation of the Accused Products and
corresponding systems. As another example, Defendant performs the claimed method when
providing or administering services to third parties, customers, and partners using the Accused
Products.

124. Defendant’s partners, customers, and users of its Accused Products and
corresponding systems and services directly infringe at least claim 21 of the *438 Patent, literally
or under the doctrine of equivalents, at least by using the Accused Products and corresponding
systems and services, as described above.

125. Defendant has actively induced and is actively inducing infringement of at least
claim 21 of the 438 Patent with specific intent to induce infringement, and/or willful blindness to
the possibility that its acts induce infringement, in violation of 35 U.S.C. § 271(b). For example,
Defendant encourages and induces customers to use Nvidia’s CUDA platform in a manner that
infringes claim 21 of the 438 Patent at least by offering and providing software that performs a
method that infringes claim 21 when installed and operated by the customer using the Accused
Products, and by engaging in activities relating to selling, marketing, advertising, promotion,
installation, support, and distribution of the Accused Products.

126. Defendant encourages, instructs, directs, and/or requires third parties—including

its certified partners and/or customers—to perform the claimed method using the software,
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platform, services, and systems in infringing ways, as described above.

127.  Defendant further encourages and induces its customers to infringe claim 21 of the
’438 Patent: 1) by making its accelerated computing and data center services available on its
website, providing applications that allow users to access those services, widely advertising those
services, and providing technical support and instructions to users (see
https://www.nvidia.com/en-us/data-center/data-center-gpus/gpu-test-drive/); and 2) through
activities relating to marketing, advertising, promotion, installation, support, and distribution of
the Accused Products, including its CUDA platform, and services in the United States. (See
https://www.nvidia.com/en-us/; see https://www.nvidia.com/en-us/about-nvidia/partners/;
https://www.nvidia.com/en-us/data-center/where-to-buy/;  https://www.nvidia.com/en-us/data-
center/where-to-buy-tesla/.)

128. For example, Defendant shares instructions, guides, and manuals, which advertise
and instruct third parties on how to use its hardware and platform as described above, including at
least customers and partners. (See https://docs.nvidia.com/cuda/cuda-c-programming-guide/.)
Defendant also provides customer service and technical support to purchasers of the Accused
Products and corresponding systems and services, which directs and encourages customers to
perform certain actions that use the Accused Products in an infringing manner. (See
https://www.nvidia.com/en-us/support/; https://www.nvidia.com/en-
us/support/enterprise/services/.)

129. Defendant and/or Defendant’s partners recommend and sell the Accused Products
and provide technical support for the installation, implementation, integration, and ongoing
operation of the Accused Products for each individual customer. On information and belief, each

customer enters into a contractual relationship with Defendant and/or one of Defendant’s partners,
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which obligates each customer to perform certain actions in order to use the Accused Products.
(See https://www.nvidia.com/en-us/agreements/; https://www.nvidia.com/en-
us/agreements/cloud-services/nvidia-cloud-agreement/; https://www.nvidia.com/en-
us/agreements/cloud-services/service-specific-terms-for-nvidia-dgx-cloud/.) Further, in order to
receive the benefit of Defendant’s and/or its partner’s continued technical support and their
specialized knowledge and guidance of the operability of the Accused Products, each customer
must continue to use the Accused Products in a way that infringes the ’438 Patent. (See
https://www.nvidia.com/en-us/support/.)

130. Further, as the entity that provides installation, implementation, and integration of
the Accused Products in addition to ensuring the Accused Product remains operational for each
customer through ongoing technical support, on information and belief, Defendant and/or
Defendant’s partners affirmatively aid and abet each customer’s use of the Accused Products in a
manner that performs the claimed method of, and infringes, the *438 Patent.

131. Defendant also contributes to the infringement of its partners, customers, and users
of the Accused Products by providing within the United States or importing into the United States
the Accused Products, which are for use in practicing, and under normal operation practice, the
methods, systems, and devices claimed in the Asserted Patents, constituting a material part of the
inventions claimed, and not a staple article or commodity of commerce suitable for substantial
non-infringing uses. Indeed, as shown above, the Accused Products and the example functionality
have no substantial non-infringing uses but are specifically designed to practice the 438 Patent.

132.  On information and belief, the infringing actions of each partner, customer, and/or
user of the Accused Products are attributable to Defendant. For example, on information and belief,

Defendant directs and controls the activities or actions of its partners or others in connection with

66



Case 7:24-cv-00221 Document 1 Filed 09/13/24 Page 67 of 93

the Accused Products by contractual agreement or otherwise requiring partners or others to provide
information and instructions to customers who acquire the Accused Products which, when
followed, results in infringement. Defendant further directs and controls the operation of devices
executing the Accused Products by programming the software which, when executed by a
customer or user, performs the claimed method of at least claim 21 of the *438 Patent.

133. Plaintiff has suffered and continues to suffer damages as a result of Defendant’s
infringement of the 438 Patent. Defendant is therefore liable to Plaintiff under 35 U.S.C. § 284
for damages in an amount that adequately compensates Plaintiff for Defendant’s infringement, but
no less than a reasonable royalty.

134. Defendant’s infringement of the ’438 Patent is knowing and willful. Defendant
acquired actual knowledge of the patent that the 438 Patent reissued from, and its family, since at
least 2017 and has acquired additional knowledge of the *438 Patent since at least the filing of this
lawsuit.

135.  On information and belief, despite Defendant’s knowledge of the Asserted Patents and
Plaintiff’s patented technology, Defendant made the deliberate decision to sell products and services
that it knew infringe these patents. Defendant’s continued infringement of the 438 Patent with
knowledge of the *438 Patent constitutes willful infringement.

THIRD CAUSE OF ACTION
(INFRINGEMENT OF THE °461 PATENT)

136. Plaintiff realleges and incorporates by reference the allegations of the preceding
paragraphs of this Complaint.

137. Defendant has infringed and continues to infringe one or more claims of the *461
Patent in violation of 35 U.S.C. 8§ 271 in this District and elsewhere in the United States and will

continue to do so. The Accused Products, including features of, e.g., the Grace Hopper Superchip
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(GH200), at least when used for their ordinary and customary purposes, practice each element of
at least claim 21 of the 461 Patent as demonstrated below.
138. For example, claim 21 of the *461 Patent recites:

21. A method of executing computations representing an artificial
neural network on a computer system comprising at least one central
processing unit (CPU), a processing unit, a first memory partition,
and a second memory partition, the method comprising:

executing, by the at least one CPU, a user interaction stream, the
user interaction stream controlling transfer of inputs to the artificial
neural network to the first memory partition and the second memory
partition;

executing, by the processing unit, a computational stream, the
computational stream controlling data exchange between the user
interaction stream and the computational stream during execution of
the computations representing the artificial neural network;

shifting control of a data exchange between the user interaction
stream and the computational stream to the computational stream in
response to starting execution of the computations representing the
artificial neural network;

shifting control of the data exchange between the user interaction

stream and the computational stream to the user interaction stream

in response to completion or interruption of the computations

representing the artificial neural network;

queueing a user command received by the user interaction stream

during execution of the computations representing the artificial

neural network; and

executing the user command during execution of the computations

representing the artificial neural network at times determined by the

computational stream.

139. The Accused Products perform each step of the method of claim 21 of the *461

Patent. To the extent the preamble is construed to be limiting, the Accused Products perform a

method of executing computations representing an artificial neural network on a computer system

comprising at least one central processing unit (CPU), a processing unit, a first memory partition,
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and a second memory partition, as further explained below. For instance, the Grace Hopper
Superchip (GH200) “brings together the groundbreaking performance of the NVIDIA Hopper
GPU with the versatility of the NVIDIA Grace™ CPU . . . in a single Superchip.” It includes the

CuDNN (CUDA Deep Neural Network) library for “[d]eep neural networks.”

Inside NVIDIA’s First GPU-CPU Superchip

The NVIDIA® GH200 Grace Hopper architecture brings together the groundbreaking
performance of the NVIDIA Hopper GPU with the versatility of the NVIDIA Grace™ CPU,
connected with a high bandwidth and memory coherent NVIDIA NVLink Chip-2-Chip
(C2C)% interconnect in a single Superchip, and support for the new NVIDIA NVLink
Switch System.

* k * kX
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An extensive suite of domain-specific libraries and frameworks further accelerates main
algorithms in a wide range of application domains, for example:

* Deep neural networks (cuDNN)

 Linear solvers for simulations and implicit unstructured methods (AmgX)
* Quantum computing (cuQuantum)

* Data science

* Machine learning (RAPIDS)

» Data loading and preprocessing for machine learning (DALI)

¢ Real-time 3D simulation and design collaboration (Omniverse)

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)
140.  As illustrated below, a diagram describing the architecture of the Grace Hopper
Superchip depicts a CPU (“Grace CPU”) with “[u]p to 72 cores” and CPU memory (“CPU

LPDDR5X”) and a GPU (“Hopper GPU”’) and GPU memory (“GPUHBM3 or HBm3e”).

Figure 1 shows the logical overview of the NVIDIA GH200 Grace Hopper Superchip and
Table 1 lists its key features.

NVIDIA GH200 Grace Hopper Superchip
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Figure 1. NVIDIA GH200 Grace Hopper Superchip Logical Overview
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Table 1. NVIDIA GH200 Grace Hopper Superchip Key Features
Grace CPU cores (number) Up to 72 cores
CPU LPDDRSX bandwidth (GB/s) Up to S00GB/s
GPU HEM bandwidth (GB/s) ATB/s HEM3
4 9TB/s HEBM3e
NVLink-C2C bandwidth (GB/s) S00GB/s total, 450GB/s per direction
CPU LPDDRSX capacity (GB) Up to 480GE
GPU HBM capacity (GB) 96GB HEM3
144GB HBM3e
PCle Gen 5 Lanes 64dx

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

141. The “Grace Hopper Superchip is the first true heterogeneous accelerated platform
for high-performance computing (HPC) and Al workloads. It accelerates applications with the
strengths of both GPUs and CPUs while providing the simplest and most productive heterogeneous

programming model to date.”

The NVIDIA GH200 Grace Hopper Superchip is the first true heterogensous accelerated
platform for high-performance computing (HPC) and Al workloads. It accelerates
applications with the strengths of both GPUs and CPUs while providing the simplest and
most productive heterogeneous programming model to date, enabling scientists and
engineers to focus on solving the world's most important problems. Together with
NVIDIA networking technologies, NVIDIA GH200 provides the recipe for the next
generation of HPC supercomputers and Al factories, enabling customers to take on
larger datasets, more complex models, and new workloads, solving them more quickly
than before.

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

142. In addition, the Accused Products, including the Grace Hopper Superchip,
implement CUDA, Nvidia’s proprietary “parallel computing platform and programming model.”
CUDA further includes the CUDA Toolkit, which “includes GPU-accelerated libraries, a

compiler, development tools and the CUDA runtime.” As an example, the “CUDA® Deep Neural
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Network library (cuDNN) is a GPU-acceleration library of primitives for deep neural networks.”

It “provides highly tuned implementations for standard routines” for GPU-based acceleration.

CUDA Zone

CUDA® is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing

units (GPUs). With CUDA, developers are able to dramatically speed up computing applications by harnessing the power of GPUs.

In GPU-accelerated applications, the sequential part of the workload runs on the CPU - which is optimized for single-threaded
performance - while the compute intensive portion of the application runs on thousands of GPU cores in parallel. When using CUDA,
developers program in popular languages such as C, C++, Fortran, Python and MATLAB and express parallelism through extensions in

the form of a few basic keywords.

The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-accelerated applications. The CUDA Toolkit includes GPU-
accelerated libraries, a compiler, development tools and the CUDA runtime.

(See https://developer.nvidia.com/cuda-zone (emphasis added).)

NVIDIA cuDNN

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of

primitives for deep neural networks. cuDNN provides highly tuned implementations for

standard routines such as forward and backward convolution, attention, matmul, poacling,

and normalization.

(See https://developer.nvidia.com/cudnn (emphasis added).)
143. Nvidia GPU architectures that implement CUDA and cuDNN include the Hopper
(e.g., Grace Hopper Superchip (GH200), H100), Ada Lovelace, Ampere, Turing, Volta, Pascal,

and Maxwell GPU architectures of the Accused Products.
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|1.GPU, CUDA Toolkit, and CUDA Driver Requirements |

The following sections highlight the compatibility of NVIDIA® cUDNN versions with the various supported NVIDIA CuUDA® Toolkit, CUDA driver, and
MNVIDIA hardware versions.

Table 1. GPU, CUDA Toolkit, and CUDA Driver Requirements

cUDNN Package CUDA Toolkit Supports static NVIDIA Driver Version CUDA Compute Supported NVIDIA
Versio inking?” . N apability,
ersion linking?? Linux Windows Capability, Hardware
cuDNMN B8.9.6 for 122 Yes ==325.60.13 ==527.41 g9.0°
CUDA 12.% - -
121 No 5o NVIDIA Hopper™-=
120 o6 NVIDIA Ada
cuDNN B8.9.6 for 11.8 Yes ==450.80.02 ==45239 ’ Lovelace
CUDA 11.x 17 o 80 architecture®
116 75 NVIDIA Ampere
) architecture
115 7.0
MNVIDIA Turing™
114 6.1
MNVIDIA Volta™
113 50
NVIDIA Pascal™
1127 50 .
NVIDIA Maxwe
11.12
10°

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-896/support-matrix/index.html
(emphasis added).)

144. The Accused Products perform a method that includes executing, by the at least
one CPU, a user interaction stream, the user interaction stream controlling transfer of inputs to
the artificial neural network to the first memory partition and the second memory partition. For
instance, as shown in the Grace Hopper Superchip architecture diagram below, the Grace Hopper
Superchip is illustrated below with a CPU (“GRACE CPU”). The CPU “share[s] a single per-
process page table” with a GPU (“Hopper GPU”), “enabling all CPU and GPU threads to access
all system-allocated memory.” The CPU is depicted as coupled to the GPU via “NVLINK C2C
[chip-to-chip],” and can access the “System Page Table” and “CPU PHYSICAL MEMORY” via
“CPU-resident access” and “GPU PHYSICAL MEMORY™ via “[r]lemote access” and “PTE [page
table entry] B.” The GPU can also access the System Page Table, and it can access “GPU
PHYSICAL MEMORY” via “GPU-resident access” and “CPU PHYSICAL MEMORY” via

“[r]lemote access” and “PTE A.” Moreover, the “System Page Table” “[t]ranslates CPU malloc()
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[memory allocation] to CPU or GPU.” “The CPU heap, CPU thread stack, global variables
memory-mapped files, and inter-process memory are accessible to all CPU and GPU threads.”
In NVIDIA Grace Hopper Superchip-based systems, Address Translation Service (ATS)

enables the CPU and GPU to share a single per-process page table, enabling all CPU and
GPU threads to access all system-allocated memory (Figure 8), which can reside on

physical CPU or GPU memory. The CPU heap, CPU thread stack, global variables,

memory-mapped files, and inter-process memory are accessible to all CPU and GPU
threads.

LPDDR5X

HOPPER
GPU

o]
~
o
x
4
pom |
z

CPU : S GPU
PHYSICAL| - CPU-resident _~Remote™ GPU-resident PHYSICAL
MEMORY A access -~ accesses access MEMORY

f S L7

System Page Table
Translates CPU malloc() to CPU or GPU

Figure 8. ATS in an NVIDIA Grace Hopper Superchip System

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

145. The “CUDA programming model” implements programming functions and
instructions for CPUs and GPUs. “The host is the CPU available in the system” and “‘system
memory associated with the CPU is called host memory.” “The GPU is called a device and GPU
memory likewise called device memory.” As an example, the first main CUDA program execution
step is “[c]opy[ing] the input data from host [CPU] memory to device [GPU] memory, also known

as host-to-device transfer.”
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Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU

is called host memaory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device

transfer.
« Load the GPU program and execute, caching data on-chip for performance.
« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added).)

146. The Accused Products perform a method that includes executing, by the processing
unit, a computational stream, the computational stream controlling data exchange between the
user interaction stream and the computational stream during execution of the computations
representing the artificial neural network. For instance, the “CUDA programming model”
implements programming functions and instructions for CPUs and GPUs. As previously stated,
the host is the CPU and the device is the GPU. After “[c]opy[ing] the input data from host [CPU]
memory to device [GPU] memory,” the second main CUDA program execution step is

“[load[ing] the GPU program and execut[ing].”
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Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU
is called host memaory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device
transfer.

+ Load the GPU program and execute, caching data on-chip for performance.

« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added).)

147. Indeed, the Grace Hopper Superchip “is designed to accelerate applications” using
“Extended GPU Memory.” As depicted in the gram of the Grace Hopper architecture below, a
GPU (“HOPPER GPU”) can access “Local CPU,” “Peer CPU,” and “Peer GPU” memory via

“NVLink.”

Accelerating Applications with Extended GPU Memory

The NVIDIA GH200 is designed to accelerate applications with exceptionally large
memory footprints, larger than the capacity of the HEM3 [ HBM3e and LPDDRSX
memeory of a single superchip (see the NVIDIA GH200 Accelerated Applications section
below).

The Extended GPU Memaory (EGM) feature over the high-bandwidth NVLink-C2C enables
GPUs to access all the system memory efficisntly. EGM provides up to 19.5TBs system
memory in a multi-node NVSwitch-connected system. With EGM, physical memory in the
systemn can be allocated to be accessible from any GPU thread. All GPU= can access EGM
at the minimum of GPU-GPU NVLink or NVLink-C2C speed.

Memory accesses within a Grace Hopper Superchip cenfiguration go through the local
high-bandwidth NVLink-C2C at 900GE/s total. Remote memory accesses are performed
via GPU NVLink, and depending on the memaory being accessed, also NVLiInk-C2C as
shown in Figure 5. With EGM, GPU threads can now access all memory resources
awvailable over the NVSwitch fabric, both LPDDRSX and HBM3 or HEM3e, unidirectionally
at 450GE/s.
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Figure 5. Memory Accesses across NVLink-connected Grace Hopper
Superchips

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

148. For instance, exemplary CUDA library cCuDNN function
“cudnnSetRNNDescriptor v8” “initializes a previously created RNN [recurrent neural network]
descriptor object.” This function “store[s] all information needed to compute the total number of
adjustable weights/biases in the RNN model.” In addition, the parameters “dirMode,”
“inputMode,” and “datatype” confirm the exchange of calculations and values between the hidden

layers of an RNN.

7.2.49. cudnnSetRNNDescriptor v8()

This function initializes a previously created RMNN descriptor object. The RNN descriptor
configured by cudnnSetRNNDescriptor wa () was enhanced to store all information
needed to compute the total number of adjustable weights/biases in the RMNMN model.

cudnnStatus t cudnnSetRNNDescriptor wi |
cudnnRNNDEE:riptﬂr_t rnnDesc, .
cudnnRNNAlge t algo,
cudnnRNNMode t cellMode,
cudnnBNNBiasMode t biasMode,
cudnnDirectionMode t dirMode,
cudnnRNNInputMode t inputMode,
cudnnDataType t dEtaTypE,
cudnnDataType t mathPrec,
cudnnHathTypE:t mathType,
int32 t inputSize,
int32 t hiddenSize,
int32:t projSize,
int32 t numLayers,
cuannDerDutﬂescriptur t dropoutDesc,
uint32 t auxFlags); :

* k * k%
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dirMode
Input. Specifies the recurrence pattern: cUDNN UNIDIRECTIONAL OF
CUDNN EIDIRECTIONAL. In bidirectional RNNs, the hidden states passed between
physical layers are concatenations of forward and backward hidden states.

inputMode
Input. Specifies how the input to the RNN model is processed by the first layer.
When inputMode iS CUDNN_LINEAR INEUT, original input vectors of size inputsize are
multiplied by the weight matrix to obtain vectors of hiddensize. When inputMode is
CUDNN skKIP INeUT, the original input vectors to the first layer are used as is without
multiplying them by the weight matrix.

dataType
Input. Specifies data type for RNN weights/biases and input and output data.

(See https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-891/pdf/cuDNN-API.pdf
(emphasis added).)

149. The Accused Products perform a method that includes shifting control of a data
exchange between the user interaction stream and the computational stream to the computational
stream in response to starting execution of the computations representing the artificial neural
network. For instance, the “CUDA programming model” implements programming functions and
instructions for CPUs (host) and GPUs (device). As an example, the “host-to-device transfer”
(CPU to GPU) first main step, the second main step is “[l]Joad the GPU program and execute” and
the third main step is “[c]opy the results from device [GPU] memory to host [CPU] memory, also

known as device-to-host transfer” (GPU to CPU).
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Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU
is called host memaory. The GPU is called a device and GPU memory likewise called device

memaory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device
transfer.
+ Load the GPU program and execute, caching data on-chip for performance.

« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
added.)

150. As previously stated, the Grace Hopper Superchip “is designed to accelerate
applications” using “Extended GPU Memory” and the GPU can access local/peer CPU and peer
GPU memory via “NVLink.” The Grace Hopper Superchip’s Extended GPU Memory feature
“enables GPUs to access all the system memory efficiently” and “physical memory in the system

can be allocated to be accessible from any GPU thread.”

Accelerating Applications with Extended GPU Memory

The NVIDIA GH200 is designed to accelerate applications with exceptionally large
memory footprints, larger than the capacity of the HEM3 [ HBM3e and LPDDRSX
memeory of a single superchip (see the NVIDIA GH200 Accelerated Applications section
below).

The Extended GPU Memory (EGM) feature over the high-bandwidth NVLink-C2C enables
GPUs to access all the system memory efficisntly. EGM provides up to 19.5TBs system
memory in a multi-node NVSwitch-connected system. With EGM, physical memory in the
systern can be zllocated to be accessible from any GPU thread. All GPU=s can access EGM
at the minimum of GPU-GPU NVLink or NVLink-C2C speed.

Memory accesses within a Grace Hopper Superchip cenfiguration go through the local
high-bandwidth NVLink-C2C at 900GE/s total. Remote memory accesses are performed
via GPU NVLink, and depending on the memaory being accessed, also NVLiInk-C2C as
shown in Figure 5. With EGM, GPU threads can now access all memory resources
available over the NVSwitch fabric, both LPDDRSX and HEM3 or HEM3e, unidirectionally
at 450GE/s.
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Local CPU < GPU

CFU PR S

CPL LPDORASY

GPU = Peer CPU

Figure 5. Memory Accesses across NVLink-connected Grace Hopper
Superchips

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)

151. The Accused Products perform a method that includes shifting control of the data
exchange between the user interaction stream and the computational stream to the user interaction
stream in response to completion or interruption of the computations representing the artificial
neural network. For instance, after the “CUDA programming model” “host-to-device transfer”
(CPU to GPU) and GPU program load and execution steps, the third main step is “[c]opy the
results from device [GPU] memory to host [CPU] memory, also known as device-to-host transfer”
(GPU to CPU). The “host-to-device transfer” (CPU to GPU) first main step can be reintroduced

for additional computations.

Let me introduce two keywords widely used in CUDA programming model: host and device.

The host is the CPU available in the system. The system memory associated with the CPU
is called host memory. The GPU is called a device and GPU memory likewise called device

memory.

To execute any CUDA program, there are three main steps:

« Copy the input data from host memory to device memory, also known as host-to-device
transfer.

+ Load the GFU program and execute, caching data on-chip for performance.

« Copy the results from device memory to host memory, also called device-to-host transfer.

(See https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/  (emphasis
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added.)

152. In addition, as shown in the Grace Hopper Superchip architecture diagram below,
the CPU (“GRACE CPU”) “share[s] a single per-process page table” with a GPU (“Hopper
GPU”), “enabling all CPU and GPU threads to access all system-allocated memory.” “The CPU
heap, CPU thread stack, global variables memory-mapped files, and inter-process memory are
accessible to all CPU and GPU threads.”

In NVIDIA Grace Hopper Superchip-based systems, Address Translation Service (ATS)
enables the CPU and GPU to share a single per-process page table, enabling all CPU and

GPU threads to access all system-allocated memory (Figure 8), which can reside on
physical CPU or GPU memory. The CPU heap, CPU thread stack, global variables,

memory-mapped files, and inter-process memory are accessible to all CPU and GPU
threads.

LPDDR5X

HOPPER

GPU

NVLINK C2C

G

-

CPU : - GPU
PHYSICAL| CPU-resident _~Remote™ GPU-resident PHYSICAL
MEMORY | o access // accesses access MEMORY

\\/‘

‘ o
‘ System Page Table

Translates CPU malloc() to CPU or GPU
Figure 8. ATS in an NVIDIA Grace Hopper Superchip System

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)
153. The Accused Products perform a method that includes queueing a user command
received by the user interaction stream during execution of the computations representing the

artificial neural network. For instance, as shown by publicly available CUDA toolkit
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documentation, CUDA implements exemplary “memory management functions” that “[c]op[y]
data between host [CPU] and device [GPU].” This includes CUDA functions “cudaMemcpy” and

“cudaMemcpyAsync.”

6.11. Memory Management

This section describes the memory management functions of the CUDA runtime application programming interface.

Some functions have overloaded C++ API template versions documented separately in the C++ API Roufines module.
Functions
* kK %
__host__ [ woid* dst , const woid* src
—opies data between host and devics
**k kK %
__host__ __ device__ wwhsyne [ wold® dst , const wvoid
—opies data between host and devics
(See https://docs.nvidia.com/cuda/cuda-runtime-api/group_ CUDART_ MEMORY .html
(emphasis added).)

154. As an example, exemplary CUDA memory management function
“cudaMemcpyAsync” “[c]opies count bytes [data] from the memory area pointed to by src [source
memory address pointer] to the memory area pointed to by dst [destination memory address
pointer], where kind [type of transfer] specifies the direction of the copy.” Destinations includes
“cudaMemcpyHostToDevice [CPU to device GPU], cudaMemcpyDeviceToHost [GPU to CPU],
cudaMemcpyDeviceToDevice [GPU to GPU]. Because the function “cudaMemcpyAsync() is
asynchronous with respect to the host, [] the call may return before the copy is complete. The copy
can optionally be associated to a stream [identified stream] by passing a non-zero stream

argument.”
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__host___ device_ cudaError_i[cudaMemcpyAsync]( void* dst , const void™ src |, size_t count , cudaMemcpyKind kind |
cudaSiream_t stream =0)

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns
cudaSuccess, cudaErrorlnvalidValue, cudaEmorlnvalidMemcpyDirection

Description

Copies count bytes from the memory area pointed to by src to the memory area pointed to by dst  where kind specifies the direction of
the copy. and must be nne af udaM '“1'“| ToHost, cudaMemcpyHostToDevice, cudaMemcpyDevice ToHost

cudaMemcpyDevice ToDe or cudahMemc; fault. Pagsing cudaMe ,_elaultlsrecnmmended in which case the type of transfer is
inferred from the pointer values Huwever cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

The memery areas may not overlap. Calling cu c{jwith dst and src pointers that do not match the direction of the copy

results in an undefined behavior

cudaMemcpyfsync() is asynchronous with respect to the host. so the call may return before the copy is complete. The copy can optionally be
associated fo a stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and

the stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannct be given lecal or shared pointers.

(See https://docs.nvidia.com/cuda/cuda-runtime-api/group_ CUDART_ MEMORY .html
(emphasis added).)

155.  The Accused Products perform a method that includes executing the user command
during execution of the computations representing the artificial neural network at times
determined by the computational stream. For instance, as shown by exemplary and publicly
available CUDA toolkit documentation, CUDA implements “memory management functions” that

“[c]op[y] data between host [CPU] and device [GPU].”

6.11. Memory Management

This section describes the memory management functions of the CUDA runtime application programming interface.

Some functions have overloaded C++ API template versions documented separately in the C++ API Roufines module.

Functions

83



Case 7:24-cv-00221 Document 1 Filed 09/13/24 Page 84 of 93

EE I I
__host__ { woid* dst , const woid* src
—opies data between host and device
EE I I
__host__ __ device__ ywhsyne [ wold*® dst , const woid
Zopies data between host and device
(See https://docs.nvidia.com/cuda/cuda-runtime-api/group_ CUDART_ MEMORY .html

(emphasis added).)

156. As an example, exemplary CUDA memory management function
“cudaMemcpyAsync” “[c]opies count bytes [data] from the memory area pointed to by src [source
memory address pointer] to the memory area pointed to by dst [destination memory address
pointer], where kind [type of transfer] specifies the direction of the copy.” Because the function
“cudaMemcpyAsync() is asynchronous with respect to the host, [] the call may return before the

copy is complete. The copy can optionally be associated to a stream [identified stream].”
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__host__ device cudaError_f cudaMemcpyAsynd{ void® dst , const void® src | size_t count | cudaMemcpyKind kind |

cudaStream f stream =0)

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns
cudaSuccess, cudaErrorlnvalidValue, cudaEmorlnvalidMemcpyDirection

Description

Copies count bytes from the memory area pointed to by src to the memory area pointed to by dst  where kind specifies the direction of
the copy, and must be one of cudaMemcpyHostToHost cudaMemcpyHostToDevice cudaMemcpyDevice ToHost,

cudaMemcpyDevice loDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is
inferred from the pointer values. However, cudalMemcpyDefault is only allowed on systems that support unified virtual addressing.

results in an undefined behavior

cudaMemcpyfsync() is asynchronous with respect to the host. so the call may return before the copy is complete. The copy can optionally be

associated fo a stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and
the stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannct be given lecal or shared pointers.

(See https://docs.nvidia.com/cuda/cuda-runtime-api/group_ CUDART_ MEMORY .html
(emphasis added).)

157. In another example, CUDA implements “CUDA-specific memory APIs [that]
provide users with guarantees about where the memory resides, which threads can access it,
whether it is migratable, and many other features that enable users to extract all the performance
the hardware has to offer.”

CUDA-specific memory APls provide users with guarantees about where the memaory
resides, which threads can access it, whether it is migratable, and many other features
that enable users to extract all the performance the hardware has to offer. Applications
can hint the system about their memory access patterns, for example, using CUDA
and/or NUMA APls, to enable the users to perform application-specific optimizations.
NUMA memory hints enable applications to inform the runtime about their memory
access patterns.

(See https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (emphasis added).)
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158. Each claim in the 461 Patent recites an independent invention. Neither claim 21,
described above, nor any other individual claim is representative of all claims in the 461 Patent.

159. Defendant has been aware of the ’461 Patent since at least the filing of this
Complaint. Defendant has been aware of the technology patented by the *461 Patent since at least
2007, when the inventors of the Asserted Patents first discussed their patented technologies with
Mr. Sanford Russell, then the CTO of Nvidia. At the time, the inventors asked Defendant to
collaborate with them on training neural networks using Nvidia’s GPUs. Defendant informed the
inventors, through Mr. Russell, that it was not interested in the collaboration. Defendant has also
cited an ancestor of the *461 Patent in its own patent portfolio since at least June 28, 2010 (See
https://patents.google.com/patent/US8648867B2/en?00=8648867#citedBY;
https://patentimages.storage.googleapis.com/ee/13/e9/61df149¢3fddc7/US8922566.pdf;
https://patentcenter.uspto.gov/applications/13335850/displayReferences/referenceForms?applicat
ion= (Nvidia U.S. Appl. No. 13/335,850 August 12, 2014, List of References Cited by Examiner).)

160. Starting in or around 2016, the inventors of the Asserted Patents held multiple
discussions with Nvidia to invest in or purchase their Al company, Neurala, Inc., and all its assets,
including the ’461 Patent family. These discussions included at least Mr. Alvin Lin, an Nvidia
Senior Director of Business Development, and Mr. Jeff Herbst, then an Nvidia Vice President of
Business Development and head of Nvidia’s Inception GPU Ventures, in or around September 6,
2016. In or around October 2016, Nvidia, through its representatives, initiated discussions with
the inventors to invest in Neurala, Inc. for approximately $10 million.

161. The inventors also discussed their patented technology, including the underlying
technology and family to the *461 Patent, with Defendant’s representatives at Nvidia’s artificial

intelligence conference in or around June 2017. On or about June 26, 2017, Defendant received
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materials from the inventors, in lieu of a meeting on or about June 29, that identified patents related
to the *461 Patent and described the technology in detail. Defendant had previously stated it was
interested in the inventors’ solutions. Defendant also featured the inventors on its website as

members of Defendant’s start-up incubator on or about September 25, 2019.

Computer Vision / Video Analytics

Inception Spotlight: Al Startup Neurala Sees
7X Speedup with NGC

Sep 25, 2019 0 Like Discuss (0)

By Nefi Alarcon

**k kK %

To help businesses develop custom computer vision solutions quickly, Neurala, a

member of NVIDIA's start-up incubator Inception, has developed Brain Builder, a

cloud platform that provides data scientists and developers that are new to deep

learning with the ability to quickly and easily train neural networks.

(See  https://developer.nvidia.com/blog/inception-spotlight-ai-startup-neurala-sees-7x-speedup-
with-ngc/ (September 25, 2019); see also https://www.youtube.com/watch?v=-WBtxGL0oQNs
(“Neurala Accelerating Al Video Annotation with NGC Containers” posted by Defendant’s
YouTube account).)

162. Defendant directly infringes at least claim 21 of the *461 Patent, either literally or
under the doctrine of equivalents, by performing the steps described above. For example,
Defendant performs the claimed method in an infringing manner as described above by
implementing the Accused Products as part of its accelerated computing operations and running
corresponding software that implements the infringing performance. Defendant also performs the

claimed method in an infringing manner when testing the operation of the Accused Products and
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corresponding systems. As another example, Defendant performs the claimed method when
providing or administering services to third parties, customers, and partners using the Accused
Products.

163. Defendant’s partners, customers, and users of its Accused Products and
corresponding systems and services directly infringe at least claim 21 of the 461 Patent, literally
or under the doctrine of equivalents, at least by using the Accused Products and corresponding
systems and services, as described above.

164. Defendant has actively induced and is actively inducing infringement of at least
claim 21 of the *461 Patent with specific intent to induce infringement, and/or willful blindness to
the possibility that its acts induce infringement, in violation of 35 U.S.C. § 271(b). For example,
Defendant encourages and induces customers to use Nvidia’s CUDA platform in a manner that
infringes claim 21 of the *461 Patent at least by offering and providing software that performs a
method that infringes claim 21 when installed and operated by the customer using the Accused
Products, and by engaging in activities relating to selling, marketing, advertising, promotion,
installation, support, and distribution of the Accused Products.

165. Defendant encourages, instructs, directs, and/or requires third parties—including
its certified partners and/or customers—to perform the claimed method using the software,
platform, services, and systems in infringing ways, as described above.

166. Defendant further encourages and induces its customers to infringe claim 21 of the
’461 Patent: 1) by making its accelerated computing and data center services available on its
website, providing applications that allow users to access those services, widely advertising those
services, and providing technical support and instructions to users (see

https://www.nvidia.com/en-us/data-center/data-center-gpus/gpu-test-drive/); and 2) through
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activities relating to marketing, advertising, promotion, installation, support, and distribution of
the Accused Products, including its CUDA platform, and services in the United States. (See
https://www.nvidia.com/en-us/; see https://www.nvidia.com/en-us/about-nvidia/partners/;
https://www.nvidia.com/en-us/data-center/where-to-buy/;  https://www.nvidia.com/en-us/data-
center/where-to-buy-tesla/.)

167. For example, Defendant shares instructions, guides, and manuals, which advertise
and instruct third parties on how to use its hardware and platform as described above, including at
least customers and partners. (See https://docs.nvidia.com/cuda/cuda-c-programming-guide/.)
Defendant also provides customer service and technical support to purchasers of the Accused
Products and corresponding systems and services, which directs and encourages customers to
perform certain actions that use the Accused Products in an infringing manner. (See
https://www.nvidia.com/en-us/support/; https://www.nvidia.com/en-
us/support/enterprise/services/.)

168. Defendant and/or Defendant’s partners recommend and sell the Accused Products
and provide technical support for the installation, implementation, integration, and ongoing
operation of the Accused Products for each individual customer. On information and belief, each
customer enters into a contractual relationship with Defendant and/or one of Defendant’s partners,
which obligates each customer to perform certain actions in order to use the Accused Products.
(See https://www.nvidia.com/en-us/agreements/; https://www.nvidia.com/en-
us/agreements/cloud-services/nvidia-cloud-agreement/; https://www.nvidia.com/en-
us/agreements/cloud-services/service-specific-terms-for-nvidia-dgx-cloud/.) Further, in order to
receive the benefit of Defendant’s and/or its partner’s continued technical support and their

specialized knowledge and guidance of the operability of the Accused Products, each customer
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must continue to use the Accused Products in a way that infringes the ’461 Patent. (See
https://www.nvidia.com/en-us/support/.)

169. Further, as the entity that provides installation, implementation, and integration of
the Accused Products in addition to ensuring the Accused Product remains operational for each
customer through ongoing technical support, on information and belief, Defendant and/or
Defendant’s partners affirmatively aid and abet each customer’s use of the Accused Products in a
manner that performs the claimed method of, and infringes, the *461 Patent.

170. Defendant also contributes to the infringement of its partners, customers, and users
of the Accused Products by providing within the United States or importing into the United States
the Accused Products, which are for use in practicing, and under normal operation practice, the
methods, systems, and devices claimed in the Asserted Patents, constituting a material part of the
inventions claimed, and not a staple article or commodity of commerce suitable for substantial
non-infringing uses. Indeed, as shown above, the Accused Products and the example functionality
have no substantial non-infringing uses but are specifically designed to practice the 461 Patent.

171.  On information and belief, the infringing actions of each partner, customer, and/or
user of the Accused Products are attributable to Defendant. For example, on information and belief,
Defendant directs and controls the activities or actions of its partners or others in connection with
the Accused Products by contractual agreement or otherwise requiring partners or others to provide
information and instructions to customers who acquire the Accused Products which, when
followed, results in infringement. Defendant further directs and controls the operation of devices
executing the Accused Products by programming the software which, when executed by a
customer or user, performs the claimed method of at least claim 21 of the *461 Patent.

172. Plaintiff has suffered and continues to suffer damages as a result of Defendant’s
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infringement of the *461 Patent. Defendant is therefore liable to Plaintiff under 35 U.S.C. § 284
for damages in an amount that adequately compensates Plaintiff for Defendant’s infringement, but
no less than a reasonable royalty.

173. Defendant’s infringement of the *461 Patent is knowing and willful. Defendant
acquired actual knowledge of the family of the *461 Patent since at least 2017 and has acquired
additional knowledge of the 461 Patent since at least the filing of this lawsuit.

174. On information and belief, despite Defendant’s knowledge of the Asserted Patents and
Plaintiff’s patented technology, Defendant made the deliberate decision to sell products and services
that it knew infringe these patents. Defendant’s continued infringement of the 461 Patent with

knowledge of the *461 Patent constitutes willful infringement.
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PRAYER FOR RELIEF

WHEREFORE, Plaintiff respectfully requests the following relief:

a) That this Court adjudge and decree that Defendant has been, and is currently,
infringing each of the Asserted Patents;

b) That this Court award Plaintiff damages to compensate for Defendant’s past and
future infringement of the Asserted Patents, through the life of the Asserted Patents;

C) That this Court award Plaintiff pre- and post-judgment interest on such;

d) That this Court order an accounting of damages incurred by Plaintiff from six years
prior to the date this lawsuit was filed through entry of a final, non-appealable
judgment;

e) That this Court determine that this patent infringement case is exceptional and
award Plaintiff its costs and attorneys’ fees incurred in this action;

f) That this Court award increased damages under 35 U.S.C. § 284; and

9) That this Court award such other relief as the Court deems just and proper.

DEMAND FOR JURY TRIAL

Plaintiff respectfully requests a trial by jury on all issues triable thereby.
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DATED: September 13, 2024 By: /s/ Mark D. Siegmund
Mark D. Siegmund
Texas Bar No. 24117055
CHERRY JOHNSON SIEGMUND JAMES
PLLC
The Roosevelt Tower
400 Austin Avenue, 9th Floor
Austin, Texas 78701
Waco, Texas 76701
Telephone: (254) 732-2242
Facsimile: (866) 627-3509
msiegmund@cjsjlaw.com

Christopher C. Campbell (pro hac vice to be
filed)

KING & SPALDING LLP

1700 Pennsylvania Avenue, NW

Suite 900

Washington, DC 20006

Telephone: (202) 626-5578

Facsimile: (202) 626-3737
ccampbell@kslaw.com

Britton F. Davis (pro hac vice to be filed)
Brian Eutermoser (pro hac vice to be filed)
KING & SPALDING LLP

1401 Lawrence Street

Suite 1900

Denver, CO 80202

Telephone: (720) 535-2300

Facsimile: (720) 535-2400
bfdavis@kslaw.com
beutermoser@kslaw.com

Attorneys for Plaintiff Neural Al, LLC

93



